scholarly journals Compact Circularly Polarized Multiband Antennas for RFID Applications

2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
H. M. El Misilmani ◽  
M. Al-Husseini ◽  
K. Y. Kabalan ◽  
A. El-Hajj

This paper presents multiband circularly polarized (CP) antennas for radio frequency identification (RFID). A coax-fed and a microstrip-line-fed antennas having optimized cross-slots in their patches are first designed for dual-band CP operation. The microstrip-line-fed design is then modified, by incorporating a U-shaped slot in its partial ground plane, to achieve additional operation band with a CP characteristic. Simulation and measured results of the presented designs are reported. The measured results are in accordance with the computed ones. The compact size and CP property make these designs suitable for RFID applications.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Enze Zhang ◽  
Andrea Michel ◽  
Paolo Nepa ◽  
Jinghui Qiu

A compact, low-profile, two-port dual-band circularly polarized (CP) stacked patch antenna for radio-frequency identification (RFID) multiple-input-multiple-output (MIMO) readers is proposed, which employs the shared-aperture technique. The proposed antenna adopts a 1.524 mm thickness Rogers Ro4350b substrate with relative permittivity of 3.48. Two pairs of isolated ports are working at two microwave- (MW-) RFID bands (2.4–2.485 GHz and 5.725–5.875 GHz) with high port isolation of 25 dB and 30 dB, respectively. A shared metal slot layer is designed to separate two feeding structures of the lower band and upper band for port isolation enhancement as well as saving space. Corner-truncated square slot and patch configurations have been designed to obtain CP modes. In the lower and upper MW-RFID bands, the relative impedance bandwidths are 12.2% and 5.7%, and the maximum realized gains are higher than 7.3 dBic. Moreover, two-element configurations have been combined for an RFID MIMO system that occupies a dimension of 119 mm × 119 mm × 12.9 mm. The MIMO antenna performance of envelope correlation coefficient (ECC) is lower than 0.03, and diversity gain is close to 10 dB.



Sensors ◽  
2019 ◽  
Vol 19 (3) ◽  
pp. 494 ◽  
Author(s):  
Laura Corchia ◽  
Giuseppina Monti ◽  
Luciano Tarricone

In this paper, a frequency-signature Radio-Frequency Identification (RFID) chipless tag for wearable applications is presented. The results achieved for a fully-textile solution guaranteeing a seamless integration in clothes are reported and discussed. The proposed tag consists of two planar monopole antennas and a 50 Ω microstrip line loaded with multiple resonators. In order to achieve a compact size, the resonators are slotted on the ground plane of the microstrip line. As for the antennas, the same geometry was exploited for both the TX and the RX tag antenna. In particular, it consists of a proximity fed planar monopole on a ground plane. The selected geometry guarantees easy integration with the multi-resonator structure. Numerical and experimental data referring to a 2-bit implementation are presented and discussed. For fabricating all the prototypes, a layer of pile was used as a substrate, while an adhesive non-woven conductive fabric was exploited for the fabrication of the conductive parts. Experimental tests demonstrate that although the performance of the final device strongly depends on the properties of the used materials and on the imperfections of the fabrication process, the proposed frequency-signature RFID chipless tag is suitable for wearable applications, such as anti-counterfeiting systems and laundry labels.



2019 ◽  
Vol 11 (2) ◽  
pp. 31 ◽  
Author(s):  
Naser Ojaroudi Parchin ◽  
Haleh Jahanbakhsh Basherlou ◽  
Raed Abd-Alhameed ◽  
James Noras

Over the past decade, radio-frequency identification (RFID) technology has attracted significant attention and become very popular in different applications, such as identification, management, and monitoring. In this study, a dual-band microstrip-fed monopole antenna has been introduced for RFID applications. The antenna is designed to work at the frequency ranges of 2.2–2.6 GHz and 5.3–6.8 GHz, covering 2.4/5.8 GHz RFID operation bands. The antenna structure is like a modified F-shaped radiator. It is printed on an FR-4 dielectric with an overall size of 38 × 45 × 1.6 mm3. Fundamental characteristics of the antenna in terms of return loss, Smith Chart, phase, radiation pattern, and antenna gain are investigated and good results are obtained. Simulations have been carried out using computer simulation technology (CST) software. A prototype of the antenna was fabricated and its characteristics were measured. The measured results show good agreement with simulations. The structure of the antenna is planar, simple to design and fabricate, easy to integrate with RF circuit, and suitable for use in RFID systems.



2017 ◽  
Vol 2017 ◽  
pp. 1-9 ◽  
Author(s):  
Ju-min Zhao ◽  
Ding Feng ◽  
Deng-ao Li ◽  
Wei Gong ◽  
Hao-xiang Liu ◽  
...  

Radio Frequency Identification (RFID) is an emerging technology for electronic labeling of objects for the purpose of automatically identifying, categorizing, locating, and tracking the objects. But in their current form RFID systems are susceptible to cloning attacks that seriously threaten RFID applications but are hard to prevent. Existing protocols aimed at detecting whether there are cloning attacks in single-reader RFID systems. In this paper, we investigate the cloning attacks identification in the multireader scenario and first propose a time-efficient protocol, called the time-efficient Cloning Attacks Identification Protocol (CAIP) to identify all cloned tags in multireaders RFID systems. We evaluate the performance of CAIP through extensive simulations. The results show that CAIP can identify all the cloned tags in large-scale RFID systems fairly fast with required accuracy.





2012 ◽  
Vol 2012 ◽  
pp. 1-7 ◽  
Author(s):  
M. E. de Cos ◽  
F. Las-Heras

A novel antenna/Artificial Magnetic Conductor (AMC) combination usable in dual-band Radio Frequency Identification (RFID) tags over metallic objects is presented. A compact and low thickness prototype is manufactured and characterized in terms of return loss and radiation properties in an anechoic chamber both alone and on a metallic plate. The performance exhibited by the presented antenna/AMC prototype is proper for RFID tags on both metallic and nonmetallic objects.



Sign in / Sign up

Export Citation Format

Share Document