scholarly journals Investigation of Bacterial Cellulose Biosynthesis Mechanism in Gluconoacetobacter hansenii

2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Bhavna V. Mohite ◽  
Satish V. Patil

The present study explores the mechanism of cellulose biosynthesis in Gluconoacetobacter hansenii. The cellulose synthase enzyme was purified as membrane fraction and solubilized by treatment with 0.1% digitonin. The enzyme was separated by native-gel electrophoresis and β-D-glucan analysis was carried out using in vitro gel assay. The cellulose synthase has glycoprotein nature and composed two polypeptide subunits of 93 KDa and 85 KDa. The confirmation of β-1,4-glucan (cellulose) was performed in whole and hydrolyzed monomeric sugar form. Tinopal and Congo red were used for cellulose detection on the gel. Thus the in vitro cellulose synthesis assay with cell free enzyme fraction was attempted to improve the understanding of cellulose biosynthesis.

2019 ◽  
Vol 130 ◽  
pp. 765-777 ◽  
Author(s):  
Hirotaka Tajima ◽  
Paavo A. Penttilä ◽  
Tomoya Imai ◽  
Kyoko Yamamoto ◽  
Yoshiaki Yuguchi

2013 ◽  
Vol 110 (44) ◽  
pp. 17856-17861 ◽  
Author(s):  
O. Omadjela ◽  
A. Narahari ◽  
J. Strumillo ◽  
H. Melida ◽  
O. Mazur ◽  
...  

2014 ◽  
Vol 8 (S4) ◽  
Author(s):  
Carolina Véspoli de Melo ◽  
Tatiana Souza-Moreira ◽  
Sandro Roberto Valentini ◽  
Cleslei Fernando Zanelli ◽  
Sidney José Lima Ribeiro

2017 ◽  
Vol 114 (13) ◽  
pp. 3533-3538 ◽  
Author(s):  
Clara Sánchez-Rodríguez ◽  
KassaDee Ketelaar ◽  
Rene Schneider ◽  
Jose A. Villalobos ◽  
Chris R. Somerville ◽  
...  

The deposition of cellulose is a defining aspect of plant growth and development, but regulation of this process is poorly understood. Here, we demonstrate that the protein kinase BRASSINOSTEROID INSENSITIVE2 (BIN2), a key negative regulator of brassinosteroid (BR) signaling, can phosphorylate Arabidopsis cellulose synthase A1 (CESA1), a subunit of the primary cell wall cellulose synthase complex, and thereby negatively regulate cellulose biosynthesis. Accordingly, point mutations of the BIN2-mediated CESA1 phosphorylation site abolished BIN2-dependent regulation of cellulose synthase activity. Hence, we have uncovered a mechanism for how BR signaling can modulate cellulose synthesis in plants.


2014 ◽  
Vol 65 (1-2) ◽  
pp. 17-24 ◽  
Author(s):  
Krystyna Kudlicka ◽  
R. M. Brown, Jr

Knowledge of the control and regulation of cellulose synthesis is fundamental to an understanding of plant development since cellulose is the primary structural component of plant cell walls. <em>In vivo</em>, the polymerization step requires a coordinated transport of substrates across membranes and relies on delicate orientations of the membrane-associated synthase complexes. Little is known about the properties of the enzyme complexes, and many questions about the biosynthesis of cell wall components at the cell surface still remain unanswered. Attempts to purify cellulose synthase from higher plants have not been successful because of the liability of enzymes upon isolation and lack of reliable <em>in vitro</em> assays. Membrane preparations from higher plant cells incorporate UDP-glucose into a glucan polymer, but this invariably turns out to be predominantly β -1,3-linked rather than β -1,4-linked glucans. Various hypotheses have been advanced to explain this phenomenon. One idea is that callose and cellulose-synthase systems are the same, but cell disruption activates callose synthesis preferentially. A second concept suggests that a regulatory protein as a part of the cellulose-synthase complex is rapidly degraded upon cell disruption. With new methods of enzyme isolation and analysis of the <em>in vitro</em> product, recent advances have been made in the isolation of an active synthase from the plasma membrane whereby cellulose synthase was separated from callose synthase.


2016 ◽  
Vol 7 (5) ◽  
pp. 3108-3116 ◽  
Author(s):  
Brandon C. Knott ◽  
Michael F. Crowley ◽  
Michael E. Himmel ◽  
Jochen Zimmer ◽  
Gregg T. Beckham

In addition to suggesting a mechanism for regulating cellulose structure, molecular simulations indicate translocation is not rate-limiting for cellulose biosynthesis.


Author(s):  
Simon Turner ◽  
Manoj Kumar

Cellulose consists of linear chains of β-1,4-linked glucose units, which are synthesized by the cellulose synthase complex (CSC). In plants, these chains associate in an ordered manner to form the cellulose microfibrils. Both the CSC and the local environment in which the individual chains coalesce to form the cellulose microfibril determine the structure and the unique physical properties of the microfibril. There are several recent reviews that cover many aspects of cellulose biosynthesis, which include trafficking of the complex to the plasma membrane and the relationship between the movement of the CSC and the underlying cortical microtubules (Bringmann et al. 2012 Trends Plant Sci. 17 , 666–674 ( doi:10.1016/j.tplants.2012.06.003 ); Kumar & Turner 2015 Phytochemistry 112 , 91–99 ( doi:10.1016/j.phytochem.2014.07.009 ); Schneider et al. 2016 Curr. Opin. Plant Biol. 34 , 9–16 ( doi:10.1016/j.pbi.2016.07.007 )). In this review, we will focus on recent advances in cellulose biosynthesis in plants, with an emphasis on our current understanding of the structure of individual catalytic subunits together with the local membrane environment where cellulose synthesis occurs. We will attempt to relate this information to our current knowledge of the structure of the cellulose microfibril and propose a model in which variations in the structure of the CSC have important implications for the structure of the cellulose microfibril produced. This article is part of a discussion meeting issue ‘New horizons for cellulose nanotechnology’.


2010 ◽  
Vol 62 (3) ◽  
pp. 553-558 ◽  
Author(s):  
Sladjana Jevremovic ◽  
Marija Petric ◽  
Suzana Zivkovic ◽  
Milana Trifunovic ◽  
Angelina Subotic

The activities and isoenzyme profiles of superoxide dismutase (SOD) in in vitro Fritillaria meleagris bulbs in response to cold treatment (4?C) were investigated. Differences in SOD activity and isoenzyme profiles in bulbs under standard growth conditions, six weeks chilling, as well as seven days after the completion of cold treatment are presented. SOD activity initially decreased but then rapidly increased seven days after cold treatment. Four isoforms of SOD are active under standard and chilling conditions, while three isoforms are presented 7 days after cold treatment. Native gel electrophoresis indicated the presence of mitochondrial and chloroplast localized SODs. .


2016 ◽  
Vol 2016 ◽  
pp. 1-8 ◽  
Author(s):  
Samaneh Sadat Maleki ◽  
Kourosh Mohammadi ◽  
Kong-shu Ji

Cellulose is the most significant structural component of plant cell wall. Cellulose, polysaccharide containing repeated unbranchedβ(1-4) D-glucose units, is synthesized at the plasma membrane by the cellulose synthase complex (CSC) from bacteria to plants. The CSC is involved in biosynthesis of cellulose microfibrils containing 18 cellulose synthase (CesA) proteins. Macrofibrils can be formed with side by side arrangement of microfibrils. In addition, beside CesA, various proteins like the KORRIGAN, sucrose synthase, cytoskeletal components, and COBRA-like proteins have been involved in cellulose biosynthesis. Understanding the mechanisms of cellulose biosynthesis is of great importance not only for improving wood production in economically important forest trees to mankind but also for plant development. This review article covers the current knowledge about the cellulose biosynthesis-related gene family.


1979 ◽  
Vol 42 (05) ◽  
pp. 1630-1633 ◽  
Author(s):  
A G Castle ◽  
N Crawford

SummaryBlood platelets contain microtubule proteins (tubulin and HMWs) which can be polymerised “in vitro” to form structures which resemble the microtubules seen in the intact platelet. Platelet tubulin is composed of two non-identical subunits a and p tubulin which have molecular weights around 55,000 but can be resolved in alkaline SDS-polyacrylamide gel electrophoresis. These subunits associate as dimers with sedimentation coefficients of about 5.7 S although it is not known whether the dimer protein is a homo- or hetero-dimer. The dimer tubulin binds the anti-mitotic drug colchicine and the kinetics of this binding are similar to those reported for neurotubulins. Platelet microtubules also contain two HMW proteins which appear to be essential and integral components of the fully assembled microtubule. These proteins have molecular weights greater than 200,000 daltons. Fluorescent labelled antibodies to platelet and brain tubulins stain long filamentous microtubular structures in bovine lens epithelial cells and this pattern of staining is prevented by exposing the cells to conditions known to cause depolymerisation of cell microtubules.


Sign in / Sign up

Export Citation Format

Share Document