scholarly journals Strengthening Reinforced Concrete Beams with CFRP and GFRP

2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Mehmet Mustafa Önal

Concrete beams were strengthened by wrapping the shear edges of the beams twice at 45° in opposite directions by either carbon fiber reinforced polymer (CFRP) or glass fiber reinforced polymer (GFRP). The study included 3 CFRP wrapped beams, 3 GFRP wrapped beams, and 3 control beams, all of which were 150×250×2200 mm and manufactured with C20 concrete and S420a structural steel at the Gazi University Technical Education Faculty labs, Turkey. Samples in molds were cured by watering in the open air for 21 days. Four-point bending tests were made on the beam test specimens and the data were collected. Data were evaluated in terms of load displacement, bearing strength, ductility, and energy consumption. In the CFRP and GFRP reinforced beams, compared to controls, 38% and 42%, respectively, strength increase was observed. In all beams, failure-flexural stress occurred in the center as expected. Most cracking was observed in the flexural region 4. A comparison of CFRP and GFRP materials reveals that GFRP enforced parts absorb more energy. Both materials yielded successful results. Thicker epoxy application in both CFRP and GFRP beams was considered to be effective in preventing break-ups.

2016 ◽  
Vol 707 ◽  
pp. 51-59 ◽  
Author(s):  
Osama Ahmed Mohamed ◽  
Rania Khattab

The behaviour of reinforced concrete beam strengthened with Carbon Fiber Reinforced Polymer (CFRP) and Glass fiber reinforced polymer GFRP laminates was investigated using finite element models and the results are presented in this paper. The numerical investigation assessed the effect of the configuration of FRP strengthening laminates on the behaviour of concrete beams. The load-deflection behaviour, and ultimate load of strengthened beam were compared to those of un-strengthened concrete beams. It was shown that using U-shaped FRP sheets increased the ultimate load. The stiffness of the strengthed beam also increased after first yielding of steel reinforcing bars. At was also observed that strengthening beams with FRP laminates to one-fourth of the beam span, modifies the failure of the beam from shear-controlled near the end of the unstrengthened beam, to flexure-controlled near mid-span. CFRP produced better results compared GFRP in terms of the ability to enhance the behavior of strengthenened reinforced concrete beams.


2020 ◽  
Vol 39 (11-12) ◽  
pp. 443-458
Author(s):  
Jiye Chen ◽  
Hai Fang ◽  
Feng Gao ◽  
Weiqing Liu

This paper reports on the flexural performance of an innovative composite grid panel composed of glass fiber-reinforced polymer face skins and deep glass fiber-reinforced polymer ribs with a trapezoidal cross-section. Three-point and four-point bending experiments were performed to demonstrate the feasibility of the composite grid panels under concentrated loads. Compared with the composite grid panels without skins, maximum increases in the ultimate load, and initial bending stiffness of the composite grid panels of approximately 68.2% and 306.7%, respectively, were achieved with the existence of both upper and lower skins. Furthermore, an analytical analysis was carried out to predict the initial bending stiffness and mid-span deflection of the composite grid panels. A comparison of the analytical and experimental results showed that the analytical model accurately predicted the flexural performance of the composite grid panels subjected to three-point and four-point bending. Failure mechanism maps were constructed to predict the mechanical response and failure modes of the composite grid panels. Moreover, the validated model was used in a parametric analytical study to further estimate the effects of various parameters on the flexural performance of the composite grid panels. The results demonstrated that the initial bending stiffness can be significantly improved by increasing the trapezoidal section ratio, face skin thickness, and grid height.


2019 ◽  
Vol 23 (7) ◽  
pp. 1290-1304
Author(s):  
Yang Yang ◽  
Ze-Yang Sun ◽  
Gang Wu ◽  
Da-Fu Cao ◽  
Zhi-Qin Zhang

This study presents a design method for hybrid fiber-reinforced-polymer-steel-reinforced concrete beams by an optimized analysis of the cross section. First, the relationships among the energy consumption, the bearing capacity, and the reinforcement ratio are analyzed; then, the parameters of the cross section are determined. Comparisons between the available theoretical and experimental results show that the designed hybrid fiber-reinforced-polymer-steel-reinforced concrete beams with a low area ratio between the fiber-reinforced polymer and the steel reinforcement could meet the required carrying capacity and exhibited high ductility.


Sign in / Sign up

Export Citation Format

Share Document