scholarly journals Improving the Efficiency of a Coagulation-Flocculation Wastewater Treatment of the Semiconductor Industry through Zeta Potential Measurements

2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Eduardo Alberto López-Maldonado ◽  
Mercedes Teresita Oropeza-Guzmán ◽  
Adrián Ochoa-Terán

Efficiency of coagulation-flocculation process used for semiconductor wastewater treatment was improved by selecting suitable conditions (pH, polyelectrolyte type, and concentration) through zeta potential measurements. Under this scenario the zeta potential,ζ, is the right parameter that allows studying and predicting the interactions at the molecular level between the contaminants in the wastewater and polyelectrolytes used for coagulation-flocculation. Additionally, this parameter is a key factor for assessing the efficiency of coagulation-flocculation processes based on the optimum dosages and windows for polyelectrolytes coagulation-flocculation effectiveness. In this paper, strategic pH variations allowed the prediction of the dosage of polyelectrolyte on wastewater from real electroplating baths, including the isoelectric point (IEP) of the dispersions of water and commercial polyelectrolytes used in typical semiconductor industries. The results showed that there is a difference between polyelectrolyte demand required for the removal of suspended solids, turbidity, and organic matter from wastewater (23.4 mg/L and 67 mg/L, resp.). It was also concluded that the dose of polyelectrolytes and coagulation-flocculation window to achieve compliance with national and international regulations as EPA in USA and SEMARNAT in Mexico is influenced by the physicochemical characteristics of the dispersions and treatment conditions (pH and polyelectrolyte dosing strategy).

2017 ◽  
Vol 24 (10) ◽  
pp. R349-R366 ◽  
Author(s):  
Catherine Zabkiewicz ◽  
Jeyna Resaul ◽  
Rachel Hargest ◽  
Wen Guo Jiang ◽  
Lin Ye

Bone morphogenetic proteins (BMPs) belong to the TGF-β super family, and are essential for the regulation of foetal development, tissue differentiation and homeostasis and a multitude of cellular functions. Naturally, this has led to the exploration of aberrance in this highly regulated system as a key factor in tumourigenesis. Originally identified for their role in osteogenesis and bone turnover, attention has been turned to the potential role of BMPs in tumour metastases to, and progression within, the bone niche. This is particularly pertinent to breast cancer, which commonly metastasises to bone, and in which studies have revealed aberrations of both BMP expression and signalling, which correlate clinically with breast cancer progression. Ultimately a BMP profile could provide new prognostic disease markers. As the evidence suggests a role for BMPs in regulating breast tumour cellular function, in particular interactions with tumour stroma and the bone metastatic microenvironment, there may be novel therapeutic potential in targeting BMP signalling in breast cancer. This review provides an update on the current knowledge of BMP abnormalities and their implication in the development and progression of breast cancer, particularly in the disease-specific bone metastasis.


2021 ◽  
Vol 778 ◽  
pp. 146227
Author(s):  
Andre Torre ◽  
Ian Vázquez-Rowe ◽  
Eduardo Parodi ◽  
Ramzy Kahhat

Author(s):  
Aida Mekhoukhe ◽  
Nacer Mohellebi ◽  
Tayeb Mohellebi ◽  
Leila Deflaoui-Abdelfettah ◽  
Sonia Medouni-Adrar ◽  
...  

OBJECTIVE: the present work proposed to extract Locust Bean Gum (LBG) from Algerian carob fruits, evaluate physicochemical and rheological properties (solubility). It aimed also to develop different formulations of strawberry jams with a mixture of LBG and pectin in order to obtain a product with a high sensory acceptance. METHODS: the physicochemical characteristics of LBG were assessed. The impact of temperature on solubility was also studied. The physical and the sensory profile and acceptance of five Jams were evaluated. RESULTS: composition results revealed that LBG presented a high level of carbohydrate but low concentrations of fat and ash. The LBG was partially cold-water-soluble (∼62% at 25°C) and needed heating to reach a higher solubility value (∼89% at 80 °C). Overall, the sensorial acceptances decreased in jams J3 which was formulated with 100% pectin and commercial one (J5). The external preference map explained that most consumers were located to the right side of the map providing evidence that most samples appreciated were J4 and J2 (rate of 80–100%). CONCLUSION: In this investigation, the LBG was used successfully in the strawberry jam’s formulation.


1996 ◽  
Vol 316 (2) ◽  
pp. 539-544 ◽  
Author(s):  
Justine S. HARVEY ◽  
Gillian M. BURGESS

Prior exposure of cultured neonatal rat dorsal root ganglion (DRG) neurons to bradykinin resulted in marked attenuation of bradykinin-induced activation of phosphoinositidase C (PIC). The (logconcentration)–response curve for bradykinin-induced [3H]inositol trisphosphate ([3H]IP3) formation was shifted to the right and the maximum response was reduced. Bradykinin increases cyclic GMP (cGMP) in DRG neurons [Burgess, Mullaney, McNeill, Coote, Minhas and Wood (1989) J. Neurochem. 53, 1212–1218] and treatment of the neurons with dibutyryl cGMP (dbcGMP) had a similar, inhibitory, effect on bradykinin-induced [3H]IP3 formation. NG-Nitro-L-arginine (LNNA) blocked bradykinin-induced formation of cGMP. It prevented the functional uncoupling induced by pretreatment with bradykinin, but not the inhibitory effect of dbcGMP on [3H]IP3 formation. The ability of LNNA to prevent desensitization was reversed by excess L-arginine, indicating that its actions were mediated through inhibition of nitric oxide synthase. In addition to functional desensitization, exposure to bradykinin reduced the number of cell-surface receptors detected with [3H]bradykinin, without affecting its KD value for the remaining sites. In contrast to bradykinin, pretreatment with dbcGMP had no effect on either the KD or Bmax for [3H]bradykinin binding. This implies that the inhibitory effect of dbcGMP was downstream from the binding of bradykinin to its receptor and upstream of IP3 formation. The lack of effect of dbcGMP on [3H]bradykinin binding suggests that the decrease in receptor number induced by bradykinin was mediated by a different mechanism and was not a key factor in the rapid phase of desensitization in these cells.


2002 ◽  
Vol 46 (1-2) ◽  
pp. 525-528 ◽  
Author(s):  
K. Hladikova ◽  
I. Ruzickova ◽  
P. Klucova ◽  
J. Wanner

This paper examines how the physicochemical characteristics of the solids are related to foam formation and describes how the foaming potential of full-scale plants can be assessed. The relations among activated sludge and biological foam hydrophobicity, scum index, aeration tank cover and filamentous population are evaluated. Individual parameter comparison reveals the scumming intensity can be estimated only on the assumption that foams is already established. None of the above mentioned characteristics can be reliably used to predict the foaming episodes at wastewater treatment plants.


2020 ◽  
Author(s):  
Hongwu Sun ◽  
Yun Yang ◽  
Shuang Ge ◽  
Zhen Song ◽  
Anni Zhao ◽  
...  

Abstract Synthetic epitope peptide are not suitable for nasal administration due to its weak immunogenic and low delivery efficiency. In this work, we developed a intranasal epitope nanovaccine (I-OVA NE) which can prolong mucosal retention and enhance CTL activity induced by epitopes. I-OVA NE was a nanoemulsion system that assembled with IKVAV-OVA257-264(I-OVA) conjugated peptides.This nanovaccine with I-OVA at a concentration of 4 mg/mL showed the average particle size of 30.37±2.49 nm, zeta potential of -16.67±1.76 mV, and encapsulation rate of 84.07±7.59%. I-OVA NE particles exhibit smooth and spherical surfaces, good dispersibility and no obvious aggregation. Moreover, the physicochemical characteristics (size, PdI and zeta potential) of this vaccine did not significantly change in the condition of mucin exist. I-OVA NE had no significant cytotoxic effects on BEAS-2B cells, and no obvious acute pathological changes were observed on nasal mucosa or lung tissue in the mice after nasal immunization. We found that I-OVA NE prolonged the nasal residence time, promoted the cellular uptake of the epitope peptide and improved the antigen uptake efficiency of BEAS-2B cells, but this effect was significantly decreased after integrin blockade. Importantly, the level of Th1 cytokines and the proportion of epitope-specific CD8+ T cells increased significantly, and thus I-OVA NE protected E.G7/OVA tumor-bearing mice by suppressing tumour growth and provoking anti-tumour immune activation. Overall, these data indicate that I-OVA NE can be an applicable strategy for tumor vaccine design.


Sign in / Sign up

Export Citation Format

Share Document