scholarly journals Thermodynamic Analysis and Optimization of a High Temperature Triple Absorption Heat Transformer

2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Mehrdad Khamooshi ◽  
Kiyan Parham ◽  
Mortaza Yari ◽  
Fuat Egelioglu ◽  
Hana Salati ◽  
...  

First law of thermodynamics has been used to analyze and optimize inclusively the performance of a triple absorption heat transformer operating with LiBr/H2O as the working pair. A thermodynamic model was developed in EES (engineering equation solver) to estimate the performance of the system in terms of the most essential parameters. The assumed parameters are the temperature of the main components, weak and strong solutions, economizers’ efficiencies, and bypass ratios. The whole cycle is optimized by EES software from the viewpoint of maximizing the COP via applying the direct search method. The optimization results showed that the COP of 0.2491 is reachable by the proposed cycle.

2017 ◽  
Vol 2017 ◽  
pp. 1-9 ◽  
Author(s):  
Xiaowei Fang ◽  
Qin Ni

In this paper, we propose a new hybrid direct search method where a frame-based PRP conjugate gradients direct search algorithm is combined with radial basis function interpolation model. In addition, the rotational minimal positive basis is used to reduce the computation work at each iteration. Numerical results for solving the CUTEr test problems show that the proposed method is promising.


2019 ◽  
Vol 23 (Suppl. 4) ◽  
pp. 1187-1197 ◽  
Author(s):  
Marek Jaszczur ◽  
Michal Dudek ◽  
Zygmunt Kolenda

One of the most advanced and most effective technology for electricity generation nowadays based on a gas turbine combined cycle. This technology uses natural gas, synthesis gas from the coal gasification or crude oil processing products as the energy carriers but at the same time, gas turbine combined cycle emits SO2, NOx, and CO2 to the environment. In this paper, a thermodynamic analysis of environmentally friendly, high temperature gas nuclear reactor system coupled with gas turbine combined cycle technology has been investigated. The analysed system is one of the most advanced concepts and allows us to produce electricity with the higher thermal efficiency than could be offered by any currently existing nuclear power plant technology. The results show that it is possible to achieve thermal efficiency higher than 50% what is not only more than could be produced by any modern nuclear plant but it is also more than could be offered by traditional (coal or lignite) power plant.


2021 ◽  
Vol 2039 (1) ◽  
pp. 012032
Author(s):  
A I Schastlivtsev ◽  
V I Borzenko

Abstract The main types and designs of hydrogen combustion units (HCU), including hydrogen-oxygen steam generators, superheaters and air heaters of various power levels, are considered. The main problems arising in the development, creation and testing of such installations are determined, including the problems of cooling the most heat-stressed units, mixing of the main components of the fuel and oxidizer, mixing of high-temperature combustion products and ballasting components, problems associated with the completeness of hydrogen combustion and ensuring safety during operation.


2004 ◽  
Vol 126 (1) ◽  
pp. 75-81 ◽  
Author(s):  
Timothy G. McGee ◽  
Justin W. Raade ◽  
H. Kazerooni

The authors present a novel power supply for mobile robotic systems. A monopropellant (e.g., hydrogen peroxide) decomposes into high temperature gases, which drive a free piston hydraulic pump (FPHP). The elimination of fuel/oxidizer mixing allows the design of simple, lightweight systems capable of operation in oxygen free environments. A thermodynamic analysis has been performed, and an experimental FPHP has been built and tested. The prototype successfully pumped hydraulic fluid, although the flow rate was limited by the off-the-shelf components used.


1999 ◽  
Author(s):  
Adam Smyk ◽  
Józef Portacha ◽  
Jerzy K. Fiszdon

Abstract Various methods of heat generation including cogeneration, district heating, and several types of individual heaters are considered together with a variety of fuels. Performance characteristics for these systems, including fuel use, and thermal and exergetic efficiency are evaluated. Specifically, a complex thermodynamic model of the cogeneration system is presented. In this model the conditions of the surroundings vary with the surroundings temperature. Calculated efficiencies include losses in all components from the sources to the consumer (i.e. in the boiler, the turbine, the heat exchangers, and the whole transmitting network). Exergetic efficiencies vary from as low as 3% for electric heaters to more than 14% for large cogeneration plants. This result places the cogeneration systems as the most effective technology for heating. This technology produces the biggest fuel savings (four times less than for electric heating), and is therefore more environmentally friendly.


Energy ◽  
2019 ◽  
Vol 172 ◽  
pp. 1132-1143 ◽  
Author(s):  
Kevin Attonaty ◽  
Pascal Stouffs ◽  
Jérôme Pouvreau ◽  
Jean Oriol ◽  
Alexandre Deydier

Sign in / Sign up

Export Citation Format

Share Document