scholarly journals Particle Production at CBM Energies in a Thermal Model Approach

2014 ◽  
Vol 2014 ◽  
pp. 1-8
Author(s):  
A. Prakash ◽  
P. K. Srivastava ◽  
B. K. Singh

The compressed baryonic matter (CBM) experiment planned at the Facility for Antiproton and Ion Research (FAIR) will provide a major scientific effort for exploring the properties of strongly interacting matter in the high baryon density regime. One of the important goals behind such experiment is to precisely determine the equation of state (EOS) for the strongly interacting matter at extremely large baryon density. In this paper, we have used some successful models for RHIC and LHC energies to predict different particle ratios and the total multiplicity of various hadrons in the CBM energy range, that is, from 10 A GeV to 40 A GeV lab energies, which corresponds to 4.43 A GeV and 8.71 A GeV center-of-mass energies. Our main emphasis is to estimate the strange particles enhancement as well as an increase in the net baryon density at CBM experiment. We have also compared the model results with the experimental data obtained at alternating gradient synchrotron (AGS) and super proton synchrotron (SPS).

2015 ◽  
Vol 30 (22) ◽  
pp. 1550131 ◽  
Author(s):  
A. Tawfik ◽  
E. Gamal ◽  
A. G. Shalaby

The production of pion, kaon and proton was measured in Pb–Pb collisions at nucleus–nucleus center-of-mass energy [Formula: see text] by the ALICE experiment at Large Hadron Collider (LHC). The particle ratios of these species compared to the RHIC measurements are confronted to the hadron resonance gas (HRG) model and to simulations based on the event generators PYTHIA 6.4.21 and HIJING 1.36. It is found that the homogeneous particle–antiparticle ratios (same species) are fully reproducible by means of HRG and partly by PYTHIA 6.4.21 and HIJING 1.36. The mixed kaon–pion and proton–pion ratios measured at RHIC and LHC energies seem to be reproducible by the HRG model. On the other hand, the strange abundances are underestimated in both event generators. This might be originated to strangeness suppression in the event generators and/or possible strangeness enhancement in the experimental data. It is apparent that the values of kaon–pion ratios are not sensitive to the huge increase of [Formula: see text] from 200 (RHIC) to 2760 GeV (LHC). We conclude that the ratios of produced particle at LHC seem not depending on the system size.


2015 ◽  
Vol 2015 ◽  
pp. 1-16 ◽  
Author(s):  
Md. Nasim ◽  
Vipul Bairathi ◽  
Mukesh Kumar Sharma ◽  
Bedangadas Mohanty ◽  
Anju Bhasin

The main aim of the relativistic heavy-ion experiment is to create extremely hot and dense matter and study the QCD phase structure. With this motivation, experimental program started in the early 1990s at the Brookhaven Alternating Gradient Synchrotron (AGS) and the CERN Super Proton Synchrotron (SPS) followed by Relativistic Heavy Ion Collider (RHIC) at Brookhaven and recently at Large Hadron Collider (LHC) at CERN. These experiments allowed us to study the QCD matter from center-of-mass energies (sNN) 4.75 GeV to 2.76 TeV. Theϕmeson, due to its unique properties, is considered as a good probe to study the QCD matter created in relativistic collisions. In this paper we present a review on the measurements ofϕmeson production in heavy-ion experiments. Mainly, we discuss the energy dependence ofϕmeson invariant yield and the production mechanism, strangeness enhancement, parton energy loss, and partonic collectivity in nucleus-nucleus collisions. Effect of later stage hadronic rescattering on elliptic flow (v2) of proton is also discussed relative to corresponding effect onϕmesonv2.


2021 ◽  
Vol 81 (5) ◽  
Author(s):  
A. Acharya ◽  
H. Adhikary ◽  
K. K. Allison ◽  
E. V. Andronov ◽  
T. Antićić ◽  
...  

AbstractThe physics goal of the strong interaction program of the NA61/SHINE experiment at the CERN Super Proton Synchrotron (SPS) is to study the phase diagram of hadronic matter by a scan of particle production in collisions of nuclei with various sizes at a set of energies covering the SPS energy range. This paper presents differential inclusive spectra of transverse momentum, transverse mass and rapidity of $$\pi ^{-}$$ π -  mesons produced in central$${}^{40}$$ 40 Ar+$${}^{45}$$ 45 Sc collisions at beam momenta of 13A, 19A, 30A, 40A, 75A and 150$$A\,\text{ Ge }\text{ V }\!/\!\textit{c}$$ A Ge V / c . Energy and system size dependence of parameters of these distributions – mean transverse mass, the inverse slope parameter of transverse mass spectra, width of the rapidity distribution and mean multiplicity – are presented and discussed. Furthermore, the dependence of the ratio of the mean number of produced pions to the mean number of wounded nucleons on the collision energy was derived. The results are compared to predictions of several models.


2020 ◽  
Vol 80 (10) ◽  
Author(s):  
A. Acharya ◽  
H. Adhikary ◽  
A. Aduszkiewicz ◽  
K. K. Allison ◽  
E. V. Andronov ◽  
...  

AbstractThe NA61/SHINE collaboration studies at the CERN Super Proton Synchrotron (SPS) the onset of deconfinement in hadronic matter by the measurement of particle production in collisions of nuclei with various sizes at a set of energies covering the SPS energy range. This paper presents results on inclusive double-differential spectra and mean multiplicities of $$\pi ^{-}$$ π - mesons produced in the 5% most central$$^7$$ 7 Be + $$^9$$ 9 Be collisions at beam momenta of 19A, 30A, 40A, 75A and 150$$A\,\text{ GeV }\!/\!c$$ A GeV / c obtained by the so-called $$h^-$$ h - method which does not require any particle identification. The shape of the transverse mass spectra differs from the shapes measured in central Pb + Pb collisions and inelastic p+p interactions. The normalized width of the rapidity distribution decreases with increasing collision energy and is in between the results for inelastic nucleon–nucleon and central Pb + Pb collisions. The mean multiplicity of pions per wounded nucleon in central$$^7$$ 7 Be + $$^9$$ 9 Be collisions is close to that in central Pb + Pb collisions up to 75$$A\,\text{ GeV }\!/\!c$$ A GeV / c . However, at the top SPS energy the result lies between those for nucleon–nucleon and Pb + Pb interactions. The results are discussed in the context of predictions for the onset of deconfinement at the CERN SPS collision energies.


2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
Fu-Hu Liu ◽  
Li-Na Gao ◽  
Roy A. Lacey

Experimental results of the rapidity distributions of negatively charged pions produced in proton-proton (p-p) and beryllium-beryllium (Be-Be) collisions at different beam momentums, measured by the NA61/SHINE Collaboration at the super proton synchrotron (SPS), are described by a revised (three-source) Landau hydrodynamic model. The squared speed-of-sound parametercs2is then extracted from the width of rapidity distribution. There is a local minimum (knee point) which indicates a softest point in the equation of state (EoS) appearing at about40A GeV/c(or 8.8 GeV) incs2excitation function (the dependence ofcs2on incident beam momentum (or center-of-mass energy)). This knee point should be related to the searching for the onset of quark deconfinement and the critical point of quark-gluon plasma (QGP) phase transition.


2021 ◽  
Vol 81 (1) ◽  
Author(s):  
A. Acharya ◽  
◽  
H. Adhikary ◽  
A. Aduszkiewicz ◽  
K. K. Allison ◽  
...  

AbstractThe NA61/SHINE experiment at the CERN Super Proton Synchrotron (SPS) studies the onset of deconfinement in hadron matter by a scan of particle production in collisions of nuclei with various sizes at a set of energies covering the SPS energy range. This paper presents results on inclusive double-differential spectra, transverse momentum and rapidity distributions and mean multiplicities of $$\pi ^\pm $$ π ± , $$K^\pm $$ K ± , p and $$\bar{p}$$ p ¯ produced in the 20% most central$$^7$$ 7 Be+$$^9$$ 9 Be collisions at beam momenta of 19A, 30A, 40A, 75A and 150A $${\mathrm{Ge} \mathrm{V}}\!/\!c$$ Ge V / c . The energy dependence of the $$K^\pm $$ K ± /$$\pi ^\pm $$ π ± ratios as well as of inverse slope parameters of the $$K^\pm $$ K ± transverse mass distributions are close to those found in inelastic p+p reactions. The new results are compared to the world data on p+p and Pb+Pb collisions as well as to predictions of the Epos, Urqmd, Ampt, Phsd and Smash models.


2015 ◽  
Vol 24 (06) ◽  
pp. 1550049 ◽  
Author(s):  
Khusniddin K. Olimov ◽  
Qasim Ali ◽  
Mahnaz Q. Haseeb ◽  
Atif Arif ◽  
Sagdulla L. Lutpullaev ◽  
...  

Various aspects of the simple phenomenological model, the grand combinational model (GCM), proposed earlier for the systematic description of the center-of-mass (cm) rapidity distributions of different particles produced in high energy heavy ion collisions, were analyzed. The values of GCM parameters were extracted from fitting the cm rapidity distributions of the negative pions in 12 C +12 C collisions at [Formula: see text] both in the experiment and using Modified FRITIOF Model. The GCM parameters extracted for the central 12 C +12 C collisions were compared with those obtained in central Pb + Pb collisions at super proton synchrotron (SPS) and alternating gradient synchrotron (AGS) energies between [Formula: see text] and [Formula: see text] and in central Au + Au collisions at Relativistic heavy ion collider (RHIC) energies between [Formula: see text] and [Formula: see text]. The plausible physical interpretations for the GCM parameters were given. The initial assumption that the parameter β of GCM should be zero for symmetric systems with identical colliding nuclei was validated. The parameter γ of GCM was deduced to follow an approximate asymptotic behavior (γ → 0 as [Formula: see text] at very large cm energies, and γ ≅ 0 could possibly be related to complete dehadronization of the whole collision system, along with attaining its maximum possible energy density, in central collisions of identical nuclei. The behavior of cm energy dependence of γ suggested that it could possibly be sensitive to deconfinement phase transition.


2016 ◽  
Vol 2016 ◽  
pp. 1-7
Author(s):  
Abdel Nasser Tawfik ◽  
L. I. Abou-Salem ◽  
Asmaa G. Shalaby ◽  
M. Hanafy

The dynamical net-charge fluctuations (νdyn) in different particle ratiosK/π,K/p, andp/πare calculated from the hadron resonance gas (HRG) model and compared with STAR central Au+Au collisions atsNN=7.7–200 GeV and NA49 central Pb+Pb collisions atsNN=6.3–17.3 GeV. The three charged particle ratios (K/π,K/p, andp/π) are determined as total and average of opposite and average of the same charges. We find an excellent agreement between the HRG calculations and the experimental measurements, especially from STAR beam energy scan (BES) program, while the strange particles in the NA49 experiment at lower Super Proton Synchrotron (SPS) energies are not reproduced by the HRG approach. We conclude that the utilized HRG version seems to take into consideration various types of correlations including strong interactions through the heavy resonances and their decays especially at BES energies.


2020 ◽  
Vol 229 (22-23) ◽  
pp. 3507-3516
Author(s):  
Marek Gazdzicki

AbstractTwenty years ago, on February 10, 2000, the CERN Director General Luciano Maiani announced: The combined data coming from the seven experiments on CERN’s Heavy Ion programme have given a clear picture of a new state of matter. This result verifies an important prediction of the present theory of fundamental forces between quarks. This report briefly reviews studies of the phase diagram of strongly interacting matter with relativistic nuclear collisions at the CERN Super Proton Synchrotron which followed the CERN’s press release on the quark-gluon plasma discovery. An attempt to formulate priorities for future measurements at the CERN SPS closes the paper. The report is dedicated to David Blaschke who celebrated his 60th birthday in 2019. David’s contribution to the studies presented here was very significant.


Sign in / Sign up

Export Citation Format

Share Document