scholarly journals Effective Transmission Coverage Area-Based Link Dynamics Characterization of VANET in Highway Scenario

2015 ◽  
Vol 2015 ◽  
pp. 1-15 ◽  
Author(s):  
Chunfeng Liu ◽  
Oliver Yang ◽  
Gen Li ◽  
Yantai Shu

This paper uses the concept of effective transmission coverage area as a model for the derivation of analytic expressions in order to characterize the dynamic statistics of link lifetime, new link arrival rate, new link interarrival time, link breakage interarrival time, and so forth. Extensive simulations have been undertaken to verify the derived analytical expressions via generated mobility traces. Results demonstrate that the proposed analytical model can characterize the dynamic statistics well. Furthermore, the mathematical results of expected link life and expected new link arrival rate are provided to be used in analyzing the network connectivity. Combining with queueing theory, the upper bound connectivity of a VANET is obtained. This work thus provides a fundamental guideline on designing new mobility models, new routing protocols, and the corresponding performance analysis in VANET.

Author(s):  
David Rincón ◽  
Sebastià Sallent

The availability of good stochastic models of network traffic is the key to developing protocols and services. A precise statistical characterization of packet interarrival time, size distribution, and connection arrival rate help network engineers to design network equipment and evaluate its performance.


1963 ◽  
Vol 59 (1) ◽  
pp. 117-124 ◽  
Author(s):  
A. Wragg

AbstractThe time-dependent solutions of an infinite set of differential-difference equations arising from queueing theory and models of ‘living’ polymer are expressed in terms of modified Bessel functions. Explicit solutions are available for constant values of a parameter describing the arrival rate or monomer concentration; for time-dependent parameter a formal solution is obtained in terms of a function which satisfies a Volterra type integral equation of the second kind. These results are used as the basis of a numerical method of solving the infinite set of differential equations when the time-dependent parameter itself satisfies a differential equation.


2019 ◽  
Author(s):  
Sandor Kristyan

The equations derived help to evaluate semi-analytically (mostly for k=1,2 or 3) the important Coulomb integrals Int rho(r1)…rho(rk) W(r1,…,rk) dr1…drk, where the one-electron density, rho(r1), is a linear combination (LC) of Gaussian functions of position vector variable r1. It is capable to describe the electron clouds in molecules, solids or any media/ensemble of materials, weight W is the distance operator indicated in the title. R stands for nucleus-electron and r for electron-electron distances. The n=m=0 case is trivial, the (n,m)=(1,0) and (0,1) cases, for which analytical expressions are well known, are widely used in the practice of computation chemistry (CC) or physics, and analytical expressions are also known for the cases n,m=0,1,2. The rest of the cases – mainly with any real (integer, non-integer, positive or negative) n and m - needs evaluation. We base this on the Gaussian expansion of |r|^-u, of which only the u=1 is the physical Coulomb potential, but the u≠1 cases are useful for (certain series based) correction for (the different) approximate solutions of Schrödinger equation, for example, in its wave-function corrections or correlation calculations. Solving the related linear equation system (LES), the expansion |r|^-u about equal SUM(k=0toL)SUM(i=1toM) Cik r^2k exp(-Aik r^2) is analyzed for |r| = r12 or RC1 with least square fit (LSF) and modified Taylor expansion. These evaluated analytic expressions for Coulomb integrals (up to Gaussian function integrand and the Gaussian expansion of |r|^-u) are useful for the manipulation with higher moments of inter-electronic distances via W, even for approximating Hamiltonian.


2014 ◽  
Vol 2014 ◽  
pp. 1-16 ◽  
Author(s):  
Waheb A. Jabbar ◽  
Mahamod Ismail ◽  
Rosdiadee Nordin

The recent advances of ensemble mobile environment of smart devices with embedded sensors have enabled the MANET to play a key role in the smart cities as well as WSN and WMN. However, these smart devices are still limited in terms of energy, processor, and memory. Moreover, the efficient routing for reliable network connectivity at anytime, anywhere, and about everything is still a challenge in multihop wireless networks. This paper evaluates the QoS and energy efficiency of three active routing protocols: (i) OLSRv2, a successor to OLSR, (ii) DYMO, a successor to both DSR and AODV, and (iii) MP-OLSR multipath extension to OLSRv2. In contrast to the related previous works which focused only on CBR traffic without considering the influence of specific traffic types on the performance of routing protocols, this work focused on this area from a different perspective. It evaluates the performance of three internet-based traffic types that can be used in the smart city applications: VoIP, HTTP, and FTP using different simulation models. The impact of the network density, load traffic, and nodes mobility on the considered protocols was evaluated by considering particular performance metrics for each traffic application. Based on the results, the study concludes by presenting useful recommendations for future work.


1970 ◽  
Vol 2 (01) ◽  
pp. 150-177 ◽  
Author(s):  
Donald L. Iglehart ◽  
Ward Whitt

The queueing systems considered in this paper consist of r independent arrival channels and s independent service channels, where as usual the arrival and service channels are independent. Arriving customers form a single queue and are served in the order of their arrival without defections. We shall treat two distinct modes of operation for the service channels. In the standard system a waiting customer is assigned to the first available service channel and the servers (servers ≡ service channels) are shut off when they are idle. Thus the classical GI/G/s system is a special case of our standard system. In the modified system a waiting customer is assigned to the service channel that can complete his service first and the servers are not shut off when they are idle. While the modified system is of some interest in its own right, we introduce it primarily as an analytical tool. Let λ i denote the arrival rate (reciprocal of the mean interarrival time) in the ith arrival channel and μ j the service rate (reciprocal of the mean service time) in the jth service channel. Then is the total arrival rate to the system and is the maximum service rate of the system. As a measure of congestion we define the traffic intensity ρ = λ/μ.


2019 ◽  
Vol 16 (10) ◽  
pp. 4117-4124
Author(s):  
Jaspreet Kaur ◽  
Amit Kumar Bindal

Sensors consume the resources to perform different operations, and energy of the nodes may be depleted due to excessive computational load; thus, may reduce the overall network lifespan as well as coverage area. Traditional energy harvesting schemes provides energy to the nodes in linear way but these schemes depend over a single source as well as these do not interact with the routing protocol. In this paper, a Hybrid Energy Harvester scheme for wireless sensor network is introduced which can utilize multiple energy sources for harvesting and also interact with the routing protocols to fulfill their energy requirements. Simulation based analysis using various protocols are performed under the QoS constraints.


1965 ◽  
Vol 87 (2) ◽  
pp. 504-510 ◽  
Author(s):  
F. T. Brown ◽  
S. E. Nelson

Universal step-response plots are given from theoretical considerations for rigid cylindrical lines containing a compressible Newtonian laminar-flow liquid. The pressure and flow step inputs and pressure and flow outputs for semi-infinite lines can, with the principle of superposition, be used to estimate the responses of a network of lines, terminations, and so on, for any transient input. Where possible, analytic expressions were found for these step responses, but in a certain region of each curve complex numerical routines based on the analytic frequency response were necessary. Analytical expressions are based on propagation and characteristic impedance operators published earlier by one of the authors.


1970 ◽  
Vol 2 (1) ◽  
pp. 150-177 ◽  
Author(s):  
Donald L. Iglehart ◽  
Ward Whitt

The queueing systems considered in this paper consist of r independent arrival channels and s independent service channels, where as usual the arrival and service channels are independent. Arriving customers form a single queue and are served in the order of their arrival without defections. We shall treat two distinct modes of operation for the service channels. In the standard system a waiting customer is assigned to the first available service channel and the servers (servers ≡ service channels) are shut off when they are idle. Thus the classical GI/G/s system is a special case of our standard system. In the modified system a waiting customer is assigned to the service channel that can complete his service first and the servers are not shut off when they are idle. While the modified system is of some interest in its own right, we introduce it primarily as an analytical tool. Let λi denote the arrival rate (reciprocal of the mean interarrival time) in the ith arrival channel and μj the service rate (reciprocal of the mean service time) in the jth service channel. Then is the total arrival rate to the system and is the maximum service rate of the system. As a measure of congestion we define the traffic intensity ρ = λ/μ.


1968 ◽  
Vol 5 (3) ◽  
pp. 591-606 ◽  
Author(s):  
G. F. Newell

The arrival rate of customers to a service facility is assumed to have the form λ(t) = λ(0) — βt2 for some constant β. Diffusion approximations show that for λ(0) sufficiently close to the service rate μ, the mean queue length at time 0 is proportional to β–1/5. A dimensionless form of the diffusion equation is evaluated numerically from which queue lengths can be evaluated as a function of time for all λ(0) and β. Particular attention is given to those situations in which neither deterministic queueing theory nor equilibrium stochastic queueing theory apply.


Sign in / Sign up

Export Citation Format

Share Document