scholarly journals A Dynamic Integrated Fault Diagnosis Method for Power Transformers

2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
Wensheng Gao ◽  
Cuifen Bai ◽  
Tong Liu

In order to diagnose transformer fault efficiently and accurately, a dynamic integrated fault diagnosis method based on Bayesian network is proposed in this paper. First, an integrated fault diagnosis model is established based on the causal relationship among abnormal working conditions, failure modes, and failure symptoms of transformers, aimed at obtaining the most possible failure mode. And then considering the evidence input into the diagnosis model is gradually acquired and the fault diagnosis process in reality is multistep, a dynamic fault diagnosis mechanism is proposed based on the integrated fault diagnosis model. Different from the existing one-step diagnosis mechanism, it includes a multistep evidence-selection process, which gives the most effective diagnostic test to be performed in next step. Therefore, it can reduce unnecessary diagnostic tests and improve the accuracy and efficiency of diagnosis. Finally, the dynamic integrated fault diagnosis method is applied to actual cases, and the validity of this method is verified.


2021 ◽  
Author(s):  
Hao DeChen ◽  
HuaLing Li ◽  
JinYing Huang

Abstract Rotating machinery (RM) is one of the most common mechanical equipment in engineering applications and has a broad and vital role. Rotating machinery includes gearboxes, bearing motors, generators, etc. In industrial production, the important position of rotating machinery and its variable speed and complex working conditions lead to unstable vibration characteristics, which have become a research hotspot in mechanical fault diagnosis. Aiming at the multi-classification problem of rotating machinery with variable speed and complex working conditions, this paper proposes a fault diagnosis method based on the construction of improved sensitive mode matrix (ISMM), isometric mapping (ISOMAP) and Convolution-Vision Transformer network (CvT) structure. After overlapping and sampling the variable speed signals, a high-dimensional ISMM is constructed, and the ISMM is mapped into the manifold space through ISOMAP manifold learning. This method can extract the fault transient characteristics of the variable speed signal, and the experiment proves that it can solve the problem that the conventional method cannot effectively extract the characteristics of the variable speed data. CvT combines the advantages of self-attention mechanism and convolution in CNN, so the CvT network structure is used for feature extraction and fault recognition and classification. The CvT network structure takes into account both global feature extraction and local feature extraction, which greatly reduces the number of training iterations and the size of the network model. Two data sets (the HFXZ-I planetary gearbox variable speed data set in the laboratory and the bearing variable speed public data set of the University of Ottawa in Canada) are used to experimentally verify the proposed fault diagnosis model. Experimental results show that the proposed fault diagnosis model has good recognition accuracy and robustness.



2017 ◽  
Vol 2017 ◽  
pp. 1-5
Author(s):  
Yu Ding ◽  
Qiang Liu

A data-driven fault diagnosis method that combines Kriging model and neural network is presented and is further used for power transformers based on analysis of dissolved gases in oil. In order to improve modeling accuracy of Kriging model, a modified model that replaces the global model of Kriging model with BP neural network is presented and is further extended using linearity weighted aggregation method. The presented method integrates characteristics of the global approximation of the neural network technology and the localized departure of the Kriging model, which improves modeling accuracy. Finally, the validity of this method is demonstrated by several numerical computations of transformer fault diagnosis problems.



2017 ◽  
Vol 2017 ◽  
pp. 1-6 ◽  
Author(s):  
Yan Wang ◽  
Liguo Zhang

The fault diagnosis method based on dissolved gas analysis (DGA) is of great significance to detect the potential faults of the transformer and improve the security of the power system. The DGA data of transformer in smart grid have the characteristics of large quantity, multiple types, and low value density. In view of DGA big data’s characteristics, the paper first proposes a new combined fault diagnosis method for transformer, in which a variety of fault diagnosis models are used to make a preliminary diagnosis, and then the support vector machine is used to make the second diagnosis. The method adopts the intelligent complementary and blending thought, which overcomes the shortcomings of single diagnosis model in transformer fault diagnosis, and improves the diagnostic accuracy and the scope of application of the model. Then, the training and deployment strategy of the combined diagnosis model is designed based on Storm and Spark platform, which provides a solution for the transformer fault diagnosis in big data environment.



IEEE Access ◽  
2018 ◽  
Vol 6 ◽  
pp. 65065-65077 ◽  
Author(s):  
Shigang Zhang ◽  
Xu Luo ◽  
Yongmin Yang ◽  
Long Wang ◽  
Xiaofei Zhang


2021 ◽  
Vol 11 (23) ◽  
pp. 11116
Author(s):  
Ke Zheng ◽  
Guozhu Jia ◽  
Linchao Yang ◽  
Chunting Liu

In the fault diagnosis of UAVs, extremely imbalanced data distribution and vast differences in effects of fault modes can drastically affect the application effect of a data-driven fault diagnosis model under the limitation of computing resources. At present, there is still no credible approach to determine the cost of the misdiagnosis of different fault modes that accounts for the interference of data distribution. The performance of the original cost-insensitive flight data-driven fault diagnosis models also needs to be improved. In response to this requirement, this paper proposes a two-step ensemble cost-sensitive diagnosis method based on the operation and maintenance data of UAV. According to the fault criticality from FMECA information, we defined a misdiagnosis hazard value and calculated the misdiagnosis cost. By using the misdiagnosis cost, a static cost matrix could be set to modify the diagnosis model and to evaluate the performance of the diagnosis results. A two-step ensemble cost-sensitive method based on the MetaCost framework was proposed using stratified bootstrapping, choosing LightGBM as meta-classifiers, and adjusting the ensemble form to enhance the overall performance of the diagnosis model and reduce the occupation of the computing resources while optimizing the total misdiagnosis cost. The experimental results based on the KPG component data of a large fixed-wing UAV show that the proposed cost-sensitive model can effectively reduce the total cost incurred by misdiagnosis, without putting forward excessive requirements on the computing equipment under the condition of ensuring a certain overall level of diagnosis performance.



2014 ◽  
Vol 519-520 ◽  
pp. 1149-1154
Author(s):  
Wen Jun Zhao

As for this problem that the equipment/devices maintenance and troubleshooting of new avionics systems is very difficult, the fault Diagnosis Method based on testing is proposed. This method is used to build fault diagnosis model and generate diagnostic testing strategy by establishing the relationship between the fault and test, and then the automatic test equipment is used to test for fault under the reasoning of the diagnosis inference, finally, fault conclusions are drawn. Application shows that this method is feasible, fault location accuracy is high and application prospect is broad.



Energies ◽  
2019 ◽  
Vol 12 (20) ◽  
pp. 4017 ◽  
Author(s):  
Haikun Shang ◽  
Junyan Xu ◽  
Zitao Zheng ◽  
Bing Qi ◽  
Liwei Zhang

Power transformers are important equipment in power systems and their reliability directly concerns the safety of power networks. Dissolved gas analysis (DGA) has shown great potential for detecting the incipient fault of oil-filled power transformers. In order to solve the misdiagnosis problems of traditional fault diagnosis approaches, a novel fault diagnosis method based on hypersphere multiclass support vector machine (HMSVM) and Dempster–Shafer (D–S) Evidence Theory (DET) is proposed. Firstly, proper gas dissolved in oil is selected as the fault characteristic of power transformers. Secondly, HMSVM is employed to diagnose transformer fault with selected characteristics. Then, particle swarm optimization (PSO) is utilized for parameter optimization. Finally, DET is introduced to fuse three different fault diagnosis methods together, including HMSVM, hybrid immune algorithm (HIA), and kernel extreme learning machine (KELM). To avoid the high conflict between different evidences, in this paper, a weight coefficient is introduced for the correction of fusion results. Results indicate that the fault diagnosis based on HMSVM has the highest probability to identify transformer faults among three artificial intelligent approaches. In addition, the improved D–S evidence theory (IDET) combines the advantages of each diagnosis method and promotes fault diagnosis accuracy.



Sign in / Sign up

Export Citation Format

Share Document