scholarly journals Dynamic Stability Improvement of Grid Connected DFIG Using Enhanced Field Oriented Control Technique for High Voltage Ride Through

2015 ◽  
Vol 2015 ◽  
pp. 1-14 ◽  
Author(s):  
V. N. Ananth Duggirala ◽  
V. Nagesh Kumar Gundavarapu

Doubly fed induction generator (DFIG) is a better alternative to increased power demand. Modern grid regulations force DFIG to operate without losing synchronism during overvoltages called high voltage ride through (HVRT) during grid faults. Enhanced field oriented control technique (EFOC) was proposed in Rotor Side Control of DFIG converter to improve power flow transfer and to improve dynamic and transient stability. Further electromagnetic oscillations are damped, improved voltage mitigation and limit surge currents for sustained operation of DFIG during voltage swells. The proposed strategy has advantages such as improved reactive power control, better damping of electromagnetic torque oscillations, and improved continuity of voltage and current from stator and rotor to grid during disturbance. In EFOC technique, rotor flux reference changes its value from synchronous speed to zero during fault for injecting current at the rotor slip frequency. In this process, DC-Offset component of stator flux is controlled so that decomposition during overvoltage faults can be minimized. The offset decomposition of flux will be oscillatory in a conventional FOC, whereas in EFOC it is aimed to be quick damping. The system performance with overvoltage of 1.3 times, 1.62 times, and 2 times the rated voltage occurring is analyzed by using simulation studies.

2017 ◽  
pp. 1695-1718
Author(s):  
Samir Abdelmalek ◽  
Hocine Belmili

Attention has been paid by many researchers to address the various challenges of grid connection of DFIG-based Wind Energy Conversion Systems (WECS). This chapter focuses on the design of a robust H8 controller for the power flow between the stator of the Doubly-Fed Induction Generator (DFIG) and the grid. The robust H8 controller design is formulated as a mixed-sensitivity problem. A mathematical model of the DFIG written in an appropriate d-q reference frame is established to carry out simulations. The proposed power control scheme is elaborated and compared with a conventional Proportional-Integral (PI) controller based on vector control technique. The results show interesting performance of the controlled system in terms of the power reference tracking (the active and reactive power) and robustness against parameter variations compared with the conventional PI controller.


Author(s):  
Samir Abdelmalek ◽  
Hocine Belmili

Attention has been paid by many researchers to address the various challenges of grid connection of DFIG-based Wind Energy Conversion Systems (WECS). This chapter focuses on the design of a robust H8 controller for the power flow between the stator of the Doubly-Fed Induction Generator (DFIG) and the grid. The robust H8 controller design is formulated as a mixed-sensitivity problem. A mathematical model of the DFIG written in an appropriate d-q reference frame is established to carry out simulations. The proposed power control scheme is elaborated and compared with a conventional Proportional-Integral (PI) controller based on vector control technique. The results show interesting performance of the controlled system in terms of the power reference tracking (the active and reactive power) and robustness against parameter variations compared with the conventional PI controller.


Author(s):  
Srinath Vanukuru ◽  
Sateesh Sukhavasi

Wind Energy is gaining interest now-a – days as one of the most important renewable sources of energy due to its ecofriendly nature. But the major disadvantage lies in variable speed wind generation and this paper gives a study on control of Wind driven doubly fed Induction Generators. The speeds above and below Synchronous speeds are obtained using a bidirectional power flow converter. By using this reactive power is controlled and hence the overall Power factor of system can be kept at unity under varying load conditions. . This paper presents simulation results of a Grid-connected DFIG. A switch-by-switch representation of the PWM converters with a carrier-based Sinusoidal PWM modulation for both rotor- and stator-side converter has been proposed. Stator-Flux Oriented vector control approach is deployed for both stator- and rotor-side converters to provide independent control of active and reactive power and keep the DC-link voltage constant. A 7.5 KW generator is designed and its effectiveness in controlling is verified in different operating conditions i.e. above and below synchronous speeds.


Energies ◽  
2019 ◽  
Vol 12 (13) ◽  
pp. 2554 ◽  
Author(s):  
Panos Kotsampopoulos ◽  
Pavlos Georgilakis ◽  
Dimitris T. Lagos ◽  
Vasilis Kleftakis ◽  
Nikos Hatziargyriou

The role of flexible alternating current transmission systems (FACTSs) in the provision of grid services is becoming increasingly important, due to the massive integration of intermittent renewable energy sources, energy storage systems, and the decommissioning of thermal plants. A comprehensive literature review of grid services offered by FACTS is performed, focusing on the different grid services that they can provide, such as power flow control, reactive power control, voltage control, power quality improvement, harmonic mitigation, improvement of transient stability, and damping of inter-area and intra-area oscillations. These grid services need to be realistically and economically validated in suitable testing environments. A review of relevant standards, guides, and the literature is performed, which covers the entire range from functional specification and factory testing up to the field testing of FACTS. Advanced industry practices, such as controller hardware in the loop (CHIL) testing of FACTS controllers by the manufacturer, and recent trends, such as CHIL testing of replica controllers by the owner, are underlined. Limitations of conventional testing and CHIL testing are explained and the use of power hardware in the loop (PHIL) simulation for FACTS testing is discussed. CHIL and scaled-down PHIL tests on a transmission static synchronous compensator (STATCOM) are performed and a comparison of the results is presented.


2019 ◽  
Vol 29 (03) ◽  
pp. 2050040
Author(s):  
Maheswari Muthusamy ◽  
A. K. Parvathy

This paper devises a design named brushless doubly fed induction generator (BDFIG) with a fault ride-through enhancement that employs upgraded field-oriented control (FOC) scheme. The DFIG is most suitable for wind energy conversion system (WECS) because it has an amicable establishment, economical operation and promising characteristics. A WECS based on two BDFIGs connected electrically in parallel and mechanically in series, excited by a three-phase inverter and controlled as variable speed, is described. For enhancing power quality and power flow capability, static compensator (STATCOM) has been incorporated in the proposed configuration. The comparative analysis on performance has been carried out with the existing proportional-integral (PI) controller and self-tuning fuzzy logic controller (STFLC) for the proposed configuration under varying wind speed. In this paper, the fuzzy controller is designed to adapt PI parameters Kp and Ki, in order to reduce at least some inherent characteristics (overshoot, response time, etc.) of the error between the reference and system response. The digital simulation results claim that the FLC-based controller can offer an attractive and feasible control for the proposed WECS integrating two BDFIGs.


2018 ◽  
Vol 7 (3.27) ◽  
pp. 500
Author(s):  
R Vasudevan ◽  
S Ramalakshmi

A new management approach for the reactive-power injections of Voltage supply Converters in High Voltage DC (VSC-HVDC) multi-terminal Systems to enhance grid transient stability. A reactive-power supplementary signal is provided for each convertor. Its worth is proportional to the frequency deviation of its consequent AC bus with admiration to the weighed-average frequency of the multiterminal system stations. The hope is to extend (decrease) the magnetism torsion of generators close to those terminals during which the frequency is superior to (below) the weighed-average frequency used. The AC frequency for all VSC stations is ever more accessible regionally for synchronization functions and will be utilized by a central controller. Simulations are allotted victimization PSS/E and therefore the outcome have revealed that transient stability is enlarged victimization this approach. Since this approach uses world capability of all VSC stations, the collision of the communication delays has been analyzed, concluding that the depressing consequence is modest, for realistic latency values. 


2014 ◽  
Vol 953-954 ◽  
pp. 337-341
Author(s):  
Chao Xu ◽  
Jin Ling Lu ◽  
Jin Long Zhou

A novel inverter control strategy to enhance the transient stability of grid-connected wind farm based on doubly-fed induction generator (DFIG) is presented. Adding transient angle control strategy in the rotor side converter active control loop, this can dissipate the system unbalancing energy and restrain the system oscillations by the variation of wind turbine speed. Adding transient voltage control strategy in reactive control loop, this can provide fast reactive power compensation and support the restoration and reconstruction of the grid voltage when fault occurred. The control strategy which can improve the transient Angle stability and transient voltage stability at the same time is put forward. Finally, a testing system including a DFIG-based wind farm is realized using DigSILENT/Power Factory, the strategy validation and the contribution to power system stability enhancement are verified by simulation.


2014 ◽  
Vol 986-987 ◽  
pp. 291-294
Author(s):  
Meng Dai

Establishing an appropriate aggregation model of wind farm is the first step of the electrical computation in wind power integration planning. This paper first summarizes the technical requirements of wind farm model from the viewpoint of engineering, then proposes an aggregation DFIG model of wind farm. Because of the lack of measured data in the planning stage, the single equivalent model is used in this paper, and be improved by considering the equivalent collection lines model. The accuracy of the aggregation model in different electrical calculation, such as power flow, transient stability and shortcut current simulation, is verified through a sample system in DIgSILENT.


Sign in / Sign up

Export Citation Format

Share Document