Active & Reactive Power Control Of A Doubly Fed Induction Generator Driven By A Wind Turbine

Author(s):  
Srinath Vanukuru ◽  
Sateesh Sukhavasi

Wind Energy is gaining interest now-a – days as one of the most important renewable sources of energy due to its ecofriendly nature. But the major disadvantage lies in variable speed wind generation and this paper gives a study on control of Wind driven doubly fed Induction Generators. The speeds above and below Synchronous speeds are obtained using a bidirectional power flow converter. By using this reactive power is controlled and hence the overall Power factor of system can be kept at unity under varying load conditions. . This paper presents simulation results of a Grid-connected DFIG. A switch-by-switch representation of the PWM converters with a carrier-based Sinusoidal PWM modulation for both rotor- and stator-side converter has been proposed. Stator-Flux Oriented vector control approach is deployed for both stator- and rotor-side converters to provide independent control of active and reactive power and keep the DC-link voltage constant. A 7.5 KW generator is designed and its effectiveness in controlling is verified in different operating conditions i.e. above and below synchronous speeds.

Author(s):  
Maruf A. Aminu

This paper is presented in an attempt to validate the dynamic response of a microgrid to line-to-line short circuit. The microgrid components include two identical Wind Turbine Generators (WTGs) tied to a 100MVA, 13.8kV utility via a Point of Common Coupling (PCC). The utility-microgrid testbed is modeled in SIMPOWERSystems® using two Doubly-Fed Induction Generators (DFIGs) in the microgrid side. While in islanded operating mode, line-to-line short circuit fault is applied at 6.0s and withdrawn at 8.0s, obtaining a 50.0s dynamic response of the system for different fault locations, under voltage and reactive power control regimes of the wind turbine controller. For measurement purpose, the absolute value of the stator complex voltage is transformed to  reference frame. Bidirectional power flow between the two feeders is established in the study. The study also confirms that the microgrid composed of DFIGs offer reactive power management capability, particularly by presenting superior performance when stressed under Q control regime than under V control regime. Finally, the response of the testbed to line-to-line short circuit has been validated and shown to be consistent with established short circuit theory.


2015 ◽  
Vol 2015 ◽  
pp. 1-14 ◽  
Author(s):  
V. N. Ananth Duggirala ◽  
V. Nagesh Kumar Gundavarapu

Doubly fed induction generator (DFIG) is a better alternative to increased power demand. Modern grid regulations force DFIG to operate without losing synchronism during overvoltages called high voltage ride through (HVRT) during grid faults. Enhanced field oriented control technique (EFOC) was proposed in Rotor Side Control of DFIG converter to improve power flow transfer and to improve dynamic and transient stability. Further electromagnetic oscillations are damped, improved voltage mitigation and limit surge currents for sustained operation of DFIG during voltage swells. The proposed strategy has advantages such as improved reactive power control, better damping of electromagnetic torque oscillations, and improved continuity of voltage and current from stator and rotor to grid during disturbance. In EFOC technique, rotor flux reference changes its value from synchronous speed to zero during fault for injecting current at the rotor slip frequency. In this process, DC-Offset component of stator flux is controlled so that decomposition during overvoltage faults can be minimized. The offset decomposition of flux will be oscillatory in a conventional FOC, whereas in EFOC it is aimed to be quick damping. The system performance with overvoltage of 1.3 times, 1.62 times, and 2 times the rated voltage occurring is analyzed by using simulation studies.


Author(s):  
S. Sarfaraz Nawaz ◽  
◽  
S. Tara Kalyani ◽  

Now a days, wind energy is developing as a significant wellspring of unpolluted and eco-friendly energy to supplant the enormous scope utilization of expendable wellsprings of energy. Wind Energy is pulling in enthusiasm of analysts everywhere throughout the globe as one of the most significant inexhaustible wellspring of energy. Be that as it may, the primary confinements lie in factor speed wind vitality. The under and above Synchronous speeds are obtained by utilizing a bidirectional power flow converter. In this paper a systematic transfer function model of a Doubly Fed Induction Generator based wind turbine structure connected to grid is developed in Mat lab/Simulink environment. The control structure of generator and that of turbine is developed and implemented. A simple approach is proposed to obtain the gains of Proportional Integral (PI) controller. A systematic detail of this control structure is presented. Under varying load conditions, it is observed that the reactive power is controlled and power factor of the system is maintained close to unity by using this scheme. Stator flux situated vector control method is conveyed for both stator and rotor side converters to supply autonomous control of active and reactive power and keep the DC link voltage consistent.


Author(s):  
Ahsanullah Memon ◽  
Mohd Wazir Mustafa ◽  
Shadi Khan Baloch ◽  
Attaullah Khidrani ◽  
Touqeer Ahmed

Doublefed induction generator(DFIG) has shown tremendous success inwind turbines due to its flexibility and ability to regulate the active andreactive power. However, the presence of brushes and slip rings affects itsreliability, stability, and power quality. Furthermore, itdoes not providepromising outcomes in case of faults even in presence of the crowbar circuit.In contrast, thebrushless doubly fed induction generator(BDFIG) is a morereliable option for wind turbines than its mentioned counterpart due to theabsence of the brushes and slip rings. This research work as such attempts toimprove the dynamic performance of thevector control(VC)oriented powerwinding (PW) stator flux-based BDFIG by optimally selecting theproportional-integral(PI) gains throughinternalmodel control(IMC)approach. The proposed control scheme is utilized to regulate the speed,torque, and reactive power of the considered BDFIG independently. Contraryto the previous literature where the “trial and error method” is generallyutilized, the current research work uses the IMC for selecting the mostsuitable PI parameters, thus reduces the complexity, time consumption, anduncertainty in optimal selection. The considered BDFIG based wind turbinewith the proposed control scheme provides a better BDFIG control designwith an enhanced dynamic response as compared to that of the same withDFIG under identical operating conditions and system configurations.


2018 ◽  
Vol 7 (4.5) ◽  
pp. 662
Author(s):  
M. Vasavi Uma Maheswari ◽  
Dr. P. V. Ramana Rao ◽  
. .

Here paper presents around the Active power along with Reactive power clout of a grid allied doubly fed Induction Generator (DFIG) with wind energy system (WES) employing PI & ANFIS controller. DFIG is formed adapting a d-q revolving allusion cage circuit with stator flux oriented, field oriented clout approach. By using a coterminous converter of Variable speed constant Frequency (VSCF) along with active the reactive power and DC tie voltage are controlled at sub and super synchronous speeds. An ANFIS has been coupled by a conventional PI controller in order to enhance the power controlling capability at steady state and voltage dip conditions 


2021 ◽  
Vol 3 (1) ◽  
Author(s):  
Ali Goodarzi ◽  
Ali Mohammad Ranjbar ◽  
Moslem Dehghani ◽  
Mina GhasemiGarpachi ◽  
Mohammad Ghiasi

AbstractIn this study, an auxiliary damping controller based on a robust controller considering the active and reactive power control loops for a doubly-fed induction generator for wind farms is proposed. The presented controller is able to improve the inter-area oscillation damping. In addition, the proposed controller applies only one accessible local signal as the input; however, it can improve the inter-area oscillation damping and, consequently the system stability for the various working conditions and uncertainties. The oscillatory modes of the system are appointed using the linear analysis. Then, the controller’s parameters are determined using the robust control approaches ($${H}_{\infty }/{H}_{2})$$ H ∞ / H 2 ) with the pole placement and linear matrix inequality method. The results of the modal analysis and time-domain simulations confirm that the controller develops the inter-area oscillation damping under the various working conditions and uncertainties.


Energies ◽  
2020 ◽  
Vol 13 (7) ◽  
pp. 1582
Author(s):  
Yingzong Jiao ◽  
Feng Li ◽  
Hui Dai ◽  
Heng Nian

This paper presents the analysis and mitigation of sub-synchronous resonance (SSR) for doubly fed induction generators (DFIG) under virtual synchronous generator (VSG) control, based on impedance methods. VSGs are considered to have grid-supporting ability and good stability in inductance-based weak grids, and are implemented in renewable power generations, including DFIG systems. However, stability analyses of VSGs for DFIG connecting with series capacitor compensation are absent. Therefore, this paper focuses on the analysis and mitigation of SSR for DFIG under VSG control. Impedance modeling of DFIG systems is used to analyze SSR stability. Based on impedance analysis, the influence of VSG control parameters and the configuration of damping factor of reactive power are discussed. Next, a parameter configuration method to mitigate SSR is proposed. Finally, time-domain simulation and fast fourier transform (FFT) results are given to validate the correctness and effectiveness of the impedance model and parameter configuration methods.


Energies ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4519
Author(s):  
Stefano Bifaretti ◽  
Vincenzo Bonaiuto ◽  
Sabino Pipolo ◽  
Cristina Terlizzi ◽  
Pericle Zanchetta ◽  
...  

The role of distributor system operators is experiencing a gradual but relevant change to include enhanced ancillary and energy dispatch services needed to manage the increased power provided by intermittent distributed generations in medium voltage networks. In this context, the paper proposes the insertion, in strategic points of the network, of specific power electronic systems, denoted as active nodes, which permit the remote controllability of the active and reactive power flow. Such capabilities, as a further benefit, enable the distributor system operators to provide ancillary network services without requiring any procurement with distributed generation systems owners. In particular, the paper highlights the benefits of active nodes, demonstrating their capabilities in reducing the inverse power flow issues from medium to high voltage lines focusing on a network cluster including renewable energy resources. As a further novelty, this study has accounted for a real cluster operated by the Italian distributor system operator Areti. A specific simulation model of the electrical lines has been implemented in DigSilent PowerFactory (DIgSILENT GmbH–Germany) software using real operating data obtained during a 1-year measurement campaign. A detailed cost-benefit analysis has been provided, accounting for different load flow scenarios. The results have demonstrated that the inclusion of active nodes can significantly reduce the drawbacks related to the reverse power flow.


2008 ◽  
Vol 13 (4) ◽  
pp. 277-284 ◽  
Author(s):  
Rodrigo Gaiba de Oliveira ◽  
João Lucas da Silva ◽  
Selênio Rocha Silva ◽  
Balduino Rabelo Junior ◽  
Wilfried Hofmann

Sign in / Sign up

Export Citation Format

Share Document