scholarly journals Effects ofStreptococcus sanguinisBacteriocin on Cell Surface Hydrophobicity, Membrane Permeability, and Ultrastructure ofCandidaThallus

2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
Shengli Ma ◽  
Yingnan Zhao ◽  
Xue Xia ◽  
Xue Dong ◽  
Wenyu Ge ◽  
...  

Candida albicans(C.a) andCandida tropicalis(C.t) were treated withStreptococcus sanguinisbacteriocin (S.s bacteriocin), respectively; the bacteriostatic dynamics of S.s bacteriocin, their effects on cell surface hydrophobicity, leakage of inorganic phosphorus and macromolecular substance, cytosolic calcium concentration, and ultrastructure changes ofCandidathallus were detected and analyzed. The results showed that inhibitory effect of S.s bacteriocin on C.a and C.t reached peak level at 24 h, the cell-surface hydrophobicity decreased significantly (P< 0.05) after S.s bacteriocin treatment, and there was leakage of cytoplasmic inorganic phosphorus and macromolecular substance from C.a and C.t; cytosolic calcium concentration decreased greatly. After 24 h treatment by S.s bacteriocin, depressive deformity and defect could be found in the cell surface of C.a and C.t; the thallus displayed irregular forms: C.a was shrunken, there was unclear margins abutting upon cell wall and cell membrane, nucleus disappeared, and cytoplasm was inhomogeneous; likewise, C.t was first plasmolysis, and then the cytoplasm was shrunk, the ultrastructure of cell wall and cell membrane was continuously damaged, and the nucleus was karyolysis. It was illustrated that S.s bacteriocin had similar antifungal effect on C.a and C.t; their cell surface hydrophobicity, membrane permeability, and ultrastructure were changed significantly on exposure to S.s bacteriocin.

2002 ◽  
Vol 68 (4) ◽  
pp. 2018-2025 ◽  
Author(s):  
Hitoshi Shimoi ◽  
Kazutoshi Sakamoto ◽  
Masaki Okuda ◽  
Ratchanee Atthi ◽  
Kazuhiro Iwashita ◽  
...  

ABSTRACT Sake, a traditional alcoholic beverage in Japan, is brewed with sake yeasts, which are classified as Saccharomyces cerevisiae. Almost all sake yeasts form a thick foam layer on sake mash during the fermentation process because of their cell surface hydrophobicity, which increases the cells' affinity for bubbles. To reduce the amount of foam, nonfoaming mutants were bred from foaming sake yeasts. Nonfoaming mutants have hydrophilic cell surfaces and no affinity for bubbles. We have cloned a gene from a foam-forming sake yeast that confers foaming ability to a nonfoaming mutant. This gene was named AWA1 and structures of the gene and its product were analyzed. The N- and C-terminal regions of Awa1p have the characteristic sequences of a glycosylphosphatidylinositol anchor protein. The entire protein is rich in serine and threonine residues and has a lot of repetitive sequences. These results suggest that Awa1p is localized in the cell wall. This was confirmed by immunofluorescence microscopy and Western blotting analysis using hemagglutinin-tagged Awa1p. Moreover, an awa1 disruptant of sake yeast was hydrophilic and showed a nonfoaming phenotype in sake mash. We conclude that Awa1p is a cell wall protein and is required for the foam-forming phenotype and the cell surface hydrophobicity of sake yeast.


2007 ◽  
Vol 73 (17) ◽  
pp. 5507-5515 ◽  
Author(s):  
Muriel Dufour ◽  
Janet M. Manson ◽  
Philip J. Bremer ◽  
Jean-Pierre Dufour ◽  
Gregory M. Cook ◽  
...  

ABSTRACT There is increasing concern regarding the presence of vancomycin-resistant enterococci in domestically farmed animals, which may act as reservoirs and vehicles of transmission for drug-resistant enterococci to humans, resulting in serious infections. In order to assess the potential for the use of monolaurin as a food preservative, it is important to understand both its target and potential mechanisms of resistance. A Tn917 mutant library of Enterococcus faecalis AR01/DGVS was screened for resistance (MIC, >100 μg/ml) to monolaurin. Three mutants were identified as resistant to monolaurin and were designated DGRM2, DGRM5, and DGRM12. The gene interrupted in all three mutants was identified as traB, which encodes an E. faecalis pheromone shutdown protein and whose complementation in trans restored monolaurin sensitivity in all three mutants. DGRM2 was selected for further characterization. E. faecalis DGRM2 showed increased resistance to gentamicin and chloramphenicol (inhibitors of protein synthesis), while no difference in the MIC was observed with the cell wall-active antibiotics penicillin and vancomycin. E. faecalis AR01/DGVS and DGRM2 were shown to have similar rates (30% cell lysis after 4 h) of cell autolytic activity when activated by monolaurin. Differences in cell surface hydrophobicity were observed between the wild type and the mutant, with the cell surface of the parent strain being significantly more hydrophobic. Analysis of the cell wall structure of DGRM2 by transmission electron microscopy revealed an increase in the apparent cell wall thickness and contraction of its cytoplasm. Taken together, these results suggest that the increased resistance of DGRM2 was due to a change in cell surface hydrophobicity, consequently limiting the diffusion of monolaurin to a potential target in the cytoplasmic membrane and/or cytoplasm of E. faecalis.


1994 ◽  
Vol 40 (4) ◽  
pp. 266-272 ◽  
Author(s):  
Kevin C. Hazen ◽  
Pati M. Glee

Cell surface hydrophobicity influences adhesion and virulence of the opportunistic fungal pathogen Candida albicans. Previous studies have shown that cell surface hydrophobicity is due to specific proteins that are exposed on hydrophobic cells but are masked by long fibrils on hydrophilic cells. This observation suggests that hydrophobic cell wall proteins may contain little or no mannosylation. In the present study, the glycosylation levels of three hydrophobic cell wall proteins (molecular mass range between 36 and 40 kDa) derived from yeast cells were examined. One hydrophilic protein (90 kDa) was also tested. Various endoglycosidases (endoglycosidase F – N-glycosidase F, O-glycosidase, β-mannosidase, N-glycosidase F), an exoglycosidase (α-mannosidase), and trifluoromethane sulfonic acid were used to deglycosylate the proteins. All four proteins were reactive to the lectin concanavalin A, demonstrating that they were mannoproteins. However, gel electrophoresis of the control and treated proteins revealed that mannosyl groups of hydrophobic proteins were less than 2 kDa in size, while the mannosyl group of the hydrophilic protein had a molecular mass of approximately 20 kDa. These results suggest that unlike many hydrophilic proteins, hydrophobic proteins may have low levels of glycosylation. Changes in glycosylation may determine exposure of hydrophobic protein regions at the cell surface.Key words: Candida albicans, cell wall, mannoproteins, hydrophobicity, fibrils.


2019 ◽  
Author(s):  
Yuria Chihara ◽  
Yutaka Tanaka ◽  
Minoru Izumi ◽  
Daisuke Hagiwara ◽  
Akira Watanabe ◽  
...  

ABSTRACTThe pathogenic fungus Aspergillus fumigatus contains galactomannans localized on the surface layer of its cell walls, which are involved in various biological processes. Galactomannans comprise α-(1→2)-/α-(1→6)-mannan and β-(1→5)-/β-(1→6)-galactofuranosyl chains. We previously revealed that GfsA is a β-galactofuranoside β-(1→5)-galactofuranosyltransferase involved in the biosynthesis of β-(1→5)-galactofuranosyl chains. Here, we clarified the entire biosynthesis of β-(1→5)-galactofuranosyl chains in A. fumigatgus. Two paralogs exist within A. fumigatus: GfsB and GfsC. We show that GfsB and GfsC, in addition to GfsA, are β-galactofuranoside β-(1→5)-galactofuranosyltransferases by biochemical and genetic analyses. GfsA, GfsB, and GfsC can synthesize β-(1→5)-galactofuranosyl oligomers up to lengths of 7, 3, and 5 galactofuranoses within an established in vitro highly efficient assay of galactofuranosyltransferase activity. Structural analyses of galactomannans extracted from the strains ΔgfsB, ΔgfsC, ΔgfsAC, and ΔgfsABC revealed that GfsA and GfsC synthesized all β-(1→5)-galactofuranosyl residues of fungal-type and O-mannose-type galactomannans, and GfsB exhibited limited function in A. fumigatus. The loss of β-(1→5)-galactofuranosyl residues decreased the hyphal growth rate and conidia formation ability as well as increased the abnormal hyphal branching structure and cell surface hydrophobicity, but this loss is dispensable for sensitivity to antifungal agents and virulence toward immune-compromised mice.IMPORTANCEβ-(1→5)-galactofuranosyl residues are widely distributed in the subphylum Pezisomycotina of the phylum Ascomycota. Pezizomycotina includes many plant and animal pathogens. Although the structure of β-(1→5)-galactofuranosyl residues of galactomannans in filamentous fungi was discovered long ago, it remains unclear which enzyme is responsible for biosynthesis of this glycan. Fungal cell wall formation processes are complicated, and information concerning glycosyltransferases is essential for their understanding. In this study, we show that GfsA and GfsC are responsible for the biosynthesis of all β-(1→5)-galactofuranosyl residues of fungal-type and O-mannose-type galactomannans. The data presented here indicates that β-(1→5)-galactofuranosyl residues are involved in cell growth, conidiation, polarity, and cell surface hydrophobicity. Our new understanding of β-(1→5)-galactofuranosyl residue biosynthesis provides important novel insights into the formation of the complex cell wall structure and the virulence of the subphylum Pezisomycotina.


2020 ◽  
Author(s):  
Yue Gao ◽  
Xiang Zhou ◽  
Miaomiao Zhang ◽  
Yajun Liu ◽  
Xiaopeng Guo ◽  
...  

Abstract Background Clostridium acetobutylicum is an important strain during acetone-butanol-ethanol (ABE) fermentation. However, butanol has toxic effects on cells, limiting the application of ABE fermentation. Accordingly, in this study, we aimed to elucidate the metabolic mechanisms through which Clostridium adapts to butanol stress to facilitate the industrial utilization of Clostridium. Results First, using cell morphology, cell membrane permeability and membrane potential, cell surface hydrophobicity, and cell membrane fatty acid composition analyses in wild-type (ATCC 824) and butanol-tolerant (Y217) strains under butanol stress, we explored the responses in the cell membrane to evaluate the damage caused by butanol poisoning. After 2.0% (v/v) butanol treatment, the extracellular conductivity of ATCC 824 increased, intracellular proteins and nucleotides were released in large quantities, the fluorescein diacetate staining rate decreased, the membrane potential decreased, and the cell membrane permeability increased. Under butanol shock, the cell surface of Y217 cells remained intact, and its butanol tolerance mechanism increased the integrity of cell membrane and reduced leakage of cell contents caused by changed in cell membrane permeability, thereby preventing butanol damage to the cell membrane. When stimulated with butanol, Y217 cells showed reduced surface hydrophobicity, thereby improving cellular tolerance to butanol. A comparison of differences in fatty acid compositions between ATCC 824 and Y217 cell membranes under butanol stress further demonstrated that maintenance of the normal physiological characteristics of cell membranes played important roles in resisting the impact of organic solvents. Conclusions Our findings clarified the changes in physiological and biochemical characteristics of the mutant Y217 cell membrane stimulated with butanol to enhance its tolerance. These results may provide important theoretical guidance for further accelerating the acquisition of bacteria with high butanol tolerance and promoting butanol production. Moreover, our study provided a scientific basis for improving the industrial and environmental adaptability of Clostridium.


2004 ◽  
Vol 72 (11) ◽  
pp. 6230-6236 ◽  
Author(s):  
James Masuoka ◽  
Kevin C. Hazen

ABSTRACT Cell surface hydrophobicity contributes to the pathogenesis of the opportunistic fungal pathogen Candida albicans. Previous work demonstrated a correlation between hydrophobicity status and changes in the acid-labile, phosphodiester-linked β-1,2-oligomannoside components of the N-linked glycans of cell wall mannoprotein. Glycan composition also defines the two major serotypes, A and B, of C. albicans strains. Here, we show that the cell surface hydrophobicity of the two serotypes is qualitatively different, suggesting that the serotypes may differ in how they modulate cell surface hydrophobicity status. The cell wall mannoproteins from hydrophilic and hydrophobic cells of both serotypes were compared to determine whether the glycan differences due to serotype affect the glycan differences due to hydrophobicity status. Composition analysis showed that the protein, hexose, and phosphate contents of the mannoprotein fraction did not differ significantly among the strains tested. Electrophoretic profiles of the acid-labile mannan differed only with hydrophobicity status, not serotype, though some strain-specific differences were observed. Furthermore, a newly available β-1,2-oligomannoside ladder allowed unambiguous identification of acid-labile mannan components. Finally, to assess whether the acid-stable mannan also affects cell surface hydrophobicity status, this fraction was fragmented into its component branches by acetolysis. The electrophoretic profiles of the acid-stable branches were very similar regardless of hydrophobicity status. However, differences were observed between serotypes. These results support and extend our current model that modification of the acid-labile β-1,2-oligomannoside chain length but not modification of the acid-stable region is one common mechanism by which switching of cell surface hydrophobicity status of C. albicans strains occurs.


1994 ◽  
Vol 127 (1) ◽  
pp. 1-13 ◽  
Author(s):  
Jos� L. L�pez-Ribot ◽  
David Navarro ◽  
Pilar Sep�lveda ◽  
Jos� M. Nogueira ◽  
Manuel Casanova ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document