scholarly journals Rho/MRTF-A-Induced Integrin Expression Regulates Angiogenesis in Differentiated Multipotent Mesenchymal Stem Cells

2015 ◽  
Vol 2015 ◽  
pp. 1-14 ◽  
Author(s):  
Rui Zhang ◽  
Nan Wang ◽  
Man Zhang ◽  
Li-Nan Zhang ◽  
Zhi-Xia Guo ◽  
...  

Mesenchymal stem cells (MSCs) are known to undergo endothelial differentiation in response to treatment with vascular endothelial growth factor (VEGF), but their angiogenic ability is poorly characterized. In the present study, we aimed to further investigate the role of Rho/MRTF-A in angiogenesis by MSCs and the effect of the Rho/MRTF-A pathway on the expression of integrinsα1β1 andα5β1, which are known to mediate physiological and pathological angiogenesis. Our results showed that increased expression ofα1,α5, andβ1 was observed during angiogenesis of differentiated MSCs, and the Rho/MRTF-A signaling pathway was demonstrated to be involved in regulating the expression of integrinsα1,α5, andβ1. Luciferase reporter assay and ChIP assay determined that MRTF-A could bind to and transactivate the integrinα1 andα5 promoters. Treatment with the Rho inhibitor C3 transferase, the Rho-associated protein kinase (ROCK) inhibitor Y27632 or with shMRTF-A inhibited both the upregulation ofα1,α5, andβ1 as well as angiogenesis. Furthermore, in human umbilical vein endothelial cells (HUVECs), MRTF-A deletion led to marked reductions in cell migration and vessel network formation compared with the control. These data demonstrate that Rho/MRTF-A signaling is an important mediator that controls integrin gene expression during MSC-mediated angiogenic processes.

2018 ◽  
Vol 96 (6) ◽  
pp. 761-768 ◽  
Author(s):  
Sen Hong ◽  
Si Chen ◽  
Xu Wang ◽  
Di Sun ◽  
Zhenkun Yan ◽  
...  

ATPase family AAA domain-containing protein 2 (ATAD2) is involved in various types of cancers, including colorectal cancer. This study aimed to determine the role of ATAD2 in angiogenesis in colorectal cancer. Here, we downregulated ATAD2 expression in HCT116 and SW480 cells, and collected the conditioned medium (CM) from control and ATAD2-silenced cells. The effect of CM on human umbilical vein endothelial cells (HUVEC) was evaluated by using CCK-8, wound healing, tube formation, Western blot, and dual-luciferase reporter assays. Our results showed that the proliferation, migration, and tube formation of HUVEC were reduced in presence of ATAD2-silenced CM, and the levels of phosphorylated vascular endothelial growth factor receptor 2 (P-VEGFR2), CD31, and CD34 were downregulated. Mechanism studies showed that ATAD2 silencing regulated the expression of vascular endothelial growth factor A (VEGFA) and miR-520a. Moreover, we found that miR-520a could bind to ATAD2, and its inhibitor partly reversed the alterations in HUVEC induced by CM from ATAD2-silenced cells. In addition, we demonstrated that miR-520a directly bound to 3′-UTR of VEGFA and inhibited its expression. Collectively, our results indicate that ATAD2 inhibition suppresses VEGFA secretion by increasing miR-520a levels. Our study suggests ATAD2 as a potential therapeutic target for angiogenesis in colorectal cancer.


2021 ◽  
Author(s):  
Jian Zhang ◽  
Yao Lu ◽  
Yangming Mao ◽  
Yue Yu ◽  
Tianyu Wu ◽  
...  

Abstract Background: Mesenchymal stem cells (MSCs) activated with IFN-γ elicit more powerful physical effects. Exosomes (Exos) secreted from MSCs have protective against myocardial injury. The aim of this study was to investigate whether Exsos derived from IFN-γ-pretreated MSCs exhibit more potent cardioprotective function and the underlying mechanisms. Methods: Exos were isolated from MSCs (Ctrl-Exo) and IFN-γ-primed MSCs (IFN-γ-Exo) and were then delivered to H9c2 cells or human umbilical vein endothelial cells (HUVECs) in vitro under oxygen and glucose deprivation (OGD) condition or in vivo in an infarcted rat heart. RNA sequencing was to identify the different expressed functional transcription factor (TF). Quantitative reverse transcription-PCR (qPCR) was to confirm the upregulated TF and miRNA in IFN-γ-primed MSCs. Dual-luciferase reporter gene assay were to analyze the transcriptional regulation of miRNAs by STAT1. The target of miR-21-5p (miR-21) was disclosed by luciferase reporter assays and qPCR. The function of BTG2 was verified in vitro under OGD condition.Result: IFN-γ-Exo accelerated migration, tube-like structure formation, and prevented H9c2 from OGD-induced apoptosis. Similarly, IFN-γ-Exo leaded to further reduction in fibrosis size, reduced cardiomyocyte apoptosis and improved cardiac function compared to Ctrl-Exo. miR-21 was significantly upregulated in both IFN-γ-primed MSCs and IFN-γ-Exo. STAT1 transcriptionally induced miR-21 expression. Up-regulated miR-21 can inhibit the expression of BTG2. BTG2 promoted H9c2 cells apoptosis and reversed the protective effect of miR-21 under OGD environment.Conclusion: IFN-γ-Exo have enhanced therapeutic efficacy against acute MI possibly through promoting angiogenesis and anti-apoptotic effect through increasing the level of miR-21, which directly targeted on BTG2.


Cells ◽  
2020 ◽  
Vol 9 (3) ◽  
pp. 757
Author(s):  
Van Thi Nguyen ◽  
Barbara Canciani ◽  
Federica Cirillo ◽  
Luigi Anastasia ◽  
Giuseppe M. Peretti ◽  
...  

Bone is an active tissue where bone mineralization and resorption occur simultaneously. In the case of fracture, there are numerous factors required to facilitate bone healing including precursor cells and blood vessels. To evaluate the interaction between bone marrow-derived mesenchymal stem cells (BMSC)—the precursor cells able to differentiate into bone-forming cells and human umbilical vein endothelial cells (HUVEC)—a cell source widely used for the study of blood vessels. We performed direct coculture of BMSC and HUVEC in normoxia and chemically induced hypoxia using Cobalt(II) chloride and Dimethyloxaloylglycine and in the condition where oxygen level was maintained at 1% as well. Cell proliferation was analyzed by crystal violet staining. Osteogenesis was examined by Alizarin Red and Collagen type I staining. Expression of angiogenic factor-vascular endothelial growth factor (VEGF) and endothelial marker-von Willebrand factor (VWF) were demonstrated by immunohistochemistry and enzyme-linked immunosorbent assay. The quantitative polymerase chain reaction was also used to evaluate gene expression. The results showed that coculture in normoxia could retain both osteogenic differentiation and endothelial markers while hypoxic condition limits cell proliferation and osteogenesis but favors the angiogenic function even after 1 of day treatment.


Sign in / Sign up

Export Citation Format

Share Document