scholarly journals A Proteomic Characterization of Bordetella pertussis Clinical Isolates Associated with a California State Pertussis Outbreak

2015 ◽  
Vol 2015 ◽  
pp. 1-12 ◽  
Author(s):  
Yulanda M. Williamson ◽  
Hercules Moura ◽  
Jennifer Whitmon ◽  
Adrian R. Woolfitt ◽  
David M. Schieltz ◽  
...  

Bordetella pertussis (Bp) is the etiologic agent of pertussis (whooping cough), a highly communicable infection. Although pertussis is vaccine preventable, in recent years there has been increased incidence, despite high vaccine coverage. Possible reasons for the rise in cases include the following: Bp strain adaptation, waning vaccine immunity, increased surveillance, and improved clinical diagnostics. A pertussis outbreak impacted California (USA) in 2010; children and preadolescents were the most affected but the burden of disease fell mainly on infants. To identify protein biomarkers associated with this pertussis outbreak, we report a whole cellular protein characterization of six Bp isolates plus the pertussis acellular vaccine strain Bp Tohama I (T), utilizing gel-free proteomics-based mass spectrometry (MS). MS/MS tryptic peptide detection and protein database searching combined with western blot analysis revealed three Bp isolates in this study had markedly reduced detection of pertactin (Prn), a subunit of pertussis acellular vaccines. Additionally, antibody affinity capture technologies were implemented using anti-Bp T rabbit polyclonal antisera and whole cellular proteins to identify putative immunogens. Proteome profiling could shed light on pathogenesis and potentially lay the foundation for reduced infection transmission strategies and improved clinical diagnostics.

Pertussis ◽  
2018 ◽  
pp. 42-65
Author(s):  
Mieszko M. Wilk ◽  
Aideen C. Allen ◽  
Alicja Misiak ◽  
Lisa Borkner ◽  
Kingston H.G. Mills

Bordetella pertussis causes whooping cough (pertussis), a severe and sometimes fatal respiratory infectious disease, especially in young infants. Pertussis can be prevented in infants and children by immunization with either whole-cell pertussis (wP) or acellular pertussis (aP) vaccines; however, its incidence is increasing in many countries despite high vaccine coverage. This resurgence in populations immunized with aP vaccines has been attributed to (1) genetic changes in circulating strains of B. pertussis resulting from vaccine-driven immune selection, (2) waning protective immunity due to poor induction of immunological memory, or (3) a failure of aP vaccines to induce the appropriate arm(s) of the cellular immune responses required to prevent infection. Studies in a baboon model have suggested that previous infection prevents reinfection as well as disease, whereas aP vaccines fail to prevent nasal colonization and transmission of B. pertussis. Studies in the mouse model have demonstrated that immunization with wP vaccines induces Th1 and Th17 responses, whereas aP vaccines promote Th2-skewed responses and high antibody titres. Thus, while aP vaccine-induced antibodies may prevent pertussis, they may not prevent nasal colonization or transmission. Emerging data have suggested that replacing alum with novel adjuvants based on pathogen-associated molecular patterns has the capacity to switch the responses induced with aP vaccines to the more protective Th1/Th17 responses and may also enhance immunological memory. It is likely that third-generation pertussis vaccines will be based on live attenuated bacteria or aP formulations with novel adjuvants, which prevent nasal and lung infection and induce sustained immunity through induction of memory T cells.


mBio ◽  
2014 ◽  
Vol 5 (2) ◽  
Author(s):  
Marieke J. Bart ◽  
Simon R. Harris ◽  
Abdolreza Advani ◽  
Yoshichika Arakawa ◽  
Daniela Bottero ◽  
...  

ABSTRACTBordetella pertussiscauses pertussis, a respiratory disease that is most severe for infants. Vaccination was introduced in the 1950s, and in recent years, a resurgence of disease was observed worldwide, with significant mortality in infants. Possible causes for this include the switch from whole-cell vaccines (WCVs) to less effective acellular vaccines (ACVs), waning immunity, and pathogen adaptation. Pathogen adaptation is suggested by antigenic divergence between vaccine strains and circulating strains and by the emergence of strains with increased pertussis toxin production. We applied comparative genomics to a worldwide collection of 343B. pertussisstrains isolated between 1920 and 2010. The global phylogeny showed two deep branches; the largest of these contained 98% of all strains, and its expansion correlated temporally with the first descriptions of pertussis outbreaks in Europe in the 16th century. We found little evidence of recent geographical clustering of the strains within this lineage, suggesting rapid strain flow between countries. We observed that changes in genes encoding proteins implicated in protective immunity that are included in ACVs occurred after the introduction of WCVs but before the switch to ACVs. Furthermore, our analyses consistently suggested that virulence-associated genes and genes coding for surface-exposed proteins were involved in adaptation. However, many of the putative adaptive loci identified have a physiological role, and further studies of these loci may reveal less obvious ways in whichB. pertussisand the host interact. This work provides insight into ways in which pathogens may adapt to vaccination and suggests ways to improve pertussis vaccines.IMPORTANCEWhooping cough is mainly caused byBordetella pertussis, and current vaccines are targeted against this organism. Recently, there have been increasing outbreaks of whooping cough, even where vaccine coverage is high. Analysis of the genomes of 343B. pertussisisolates from around the world over the last 100 years suggests that the organism has emerged within the last 500 years, consistent with historical records. We show that global transmission of new strains is very rapid and that the worldwide population ofB. pertussisis evolving in response to vaccine introduction, potentially enabling vaccine escape.


2017 ◽  
Vol 145 (7) ◽  
pp. 1392-1397 ◽  
Author(s):  
E. L. ROCHA ◽  
D. LEITE ◽  
C. H. CAMARGO ◽  
L. M. MARTINS ◽  
R. S. N. SILVA ◽  
...  

SUMMARYPertussis is a worldwide acute respiratory disease caused by the bacterium Bordetella pertussis. Despite high vaccine coverage, the bacterium continues to circulate in populations and is still one of the most common vaccine-preventable diseases. In Brazil, pertussis incidence has presented a significant decrease since 1990 but since 2011 a sudden increase in incidence has been observed. Thus, the aim of this study was to perform a molecular epidemiological characterization of B. pertussis strains isolated in the Central-Western region (specifically in Distrito Federal) of Brazil from August 2012 to August 2014. During this period, 92 B. pertussis strains were isolated from the outbreaks. All strains were characterized by serotyping and XbaI pulsed-field gel electrophoresis profiles. From August to December 2012, the most prevalent serotype observed was 1,3 (13/17). During 2013 the prevalence of serotype 1,3 decreased (13/30) and from January 2014 to August 2014 the most prevalent serotype was 1,2 (33/45). Fourteen PFGE profiles were identified. Of these, BP-XbaI0039 prevalence increased from 3/17 in 2012 to 10/30 in 2013, and 35/45 in 2014. These results evidence the selection of a specific genetic profile during this period, suggesting the occurrence of a bacterial genomic profile with high circulation potential.


2010 ◽  
Vol 17 (3) ◽  
pp. 317-324 ◽  
Author(s):  
Nathalie Mielcarek ◽  
Anne-Sophie Debrie ◽  
Severine Mahieux ◽  
Camille Locht

ABSTRACT Despite the availability of efficacious vaccines, the incidence of whooping cough is still high in many countries and is even increasing in countries with high vaccine coverage. Most severe and life-threatening pertussis cases occur in infants who are too young to be sufficiently protected by current vaccine regimens. As a potential solution to this problem, we have developed an attenuated live Bordetella pertussis vaccine strain, named BPZE1. Here, we show that after a single administration, BPZE1 induces dose-dependent protection against challenge with virulent B. pertussis in low-dose and in high-dose intranasal mouse lung colonization models. In addition, we observed BPZE1 dose-dependent antibody titers to B. pertussis antigens, as well as cell-mediated immunity, evidenced by the amounts of gamma interferon (IFN-γ) released from spleen cells upon stimulation with B. pertussis antigens. These two parameters may perhaps be used as readouts in clinical trials in humans that are currently being planned.


2005 ◽  
Vol 73 (7) ◽  
pp. 4295-4301 ◽  
Author(s):  
Sylvie Alonso ◽  
Eve Willery ◽  
Genevieve Renauld-Mongénie ◽  
Camille Locht

ABSTRACT Bordetella pertussis, the etiologic agent of whooping cough, is a highly infectious human pathogen capable of inducing mucosal and systemic immune responses upon a single intranasal administration. In an attenuated, pertussis toxin (PTX)-deficient recombinant form, it may therefore constitute an efficient bacterial vector that is particularly well adapted for the delivery of heterologous antigens to the respiratory mucosa. Filamentous hemagglutinin (FHA) has been used as a carrier to present foreign antigens at the bacterial surface, thereby inducing local, systemic, and protective immune responses to these antigens in mice. Both full-length and truncated (Fha44) forms of FHA have been used for antigen presentation. To investigate the effect of the carrier (FHA or Fha44) on antibody responses to passenger antigens, we genetically fused the HtrA protein of nontypeable Haemophilus influenzae to either FHA form. The fha-htrA and Fha44 gene-htrA hybrids were expressed as single copies inserted into the chromosome of PTX-deficient B. pertussis. Both chimeras were secreted into the culture supernatants of the recombinant strains and were recognized by anti-FHA and anti-HtrA antibodies. Intranasal infection with the strain producing the FHA-HtrA hybrid led to significantly higher anti-HtrA and anti-FHA antibody titers than those obtained in mice infected with the Fha44-HtrA-producing strain. Interestingly, the B. pertussis strain producing the Fha44-HtrA chimera colonized the mouse lungs more efficiently than the parental, Fha44-producing strain and gave rise to higher anti-FHA antibody titers than those induced by the parental strain.


2004 ◽  
Vol 72 (8) ◽  
pp. 4874-4877 ◽  
Author(s):  
Karine Dalet ◽  
Christian Weber ◽  
Laurent Guillemot ◽  
Elisabeth Njamkepo ◽  
Nicole Guiso

ABSTRACT We describe a clinical isolate of Bordetella pertussis, the agent responsible for whooping cough, composed of at least two clones harboring one or two copies of the cya locus encoding one of the major toxins, adenylate cyclase-hemolysin. No difference was observed between the two clones in murine and cellular models, probably due to the high instability of the cya locus duplication.


2007 ◽  
Vol 49 (2) ◽  
pp. 123-125 ◽  
Author(s):  
Célia R. Gonçalves ◽  
Tânia M. I. Vaz ◽  
Marta I. C. Medeiros ◽  
Maria T. F. Castro ◽  
Marilu M. M. Rocha ◽  
...  

Whooping cough or pertussis was a major cause of childhood morbidity and mortality in the world until the introduction of a whole-cell vaccine in the 1940's. However, since the early 1980's whooping cough cases have increased in many countries, becoming an important problem of public health. This increase may be due to accuracy of laboratory diagnosis and reporting of the disease, a decline in immunity over time, demographic changes, and adaptation of the bacterial population to vaccine-induced immunity. The purpose of this study was to analyze phenotypically and genotypically a collection of 67 Bordetella pertussis isolates recovered during the period 1988-2002 in São Paulo State, Brazil to determine their characteristics and relatedness. All isolates were submitted to susceptibility testing to erythromycin, serotyping, and 56 isolates were analyzed by Pulsed Field Gel Electrophoresis (PFGE). All isolates were susceptible to erythromycin and the majority of them belonged to serotype 1,3. The 56 isolates were classified into 11 PFGE profiles according to the differences in banding patterns. Although more than 60% of the isolates were recovered from patients aged less than three months, almost 15% of them were isolated from adolescents/adults evidencing the increase in the incidence of pertussis among this group of age.


2022 ◽  
Author(s):  
Zheng XU ◽  
Dalong Hu ◽  
Laurence Don Wai Luu ◽  
Sophie Octavia ◽  
Anthony D Keil ◽  
...  

Whooping cough (pertussis) is a highly contagious respiratory disease caused by the bacterium Bordetella pertussis. Despite high vaccine coverage, pertussis has re-emerged in many countries and caused two large epidemics in Australia since 2007. Here, we undertook a genomic and phylogeographic study of 385 Australian B. pertussis isolates collected from 2008 to 2017. The Australian B. pertussis population was found to be composed of mostly ptxP3 strains carrying different fim3 alleles, with ptxP3-fim3A genotype expanded far more than ptxP3-fim3B. Within the former, there were six co-circulating epidemic lineages (EL1 to EL6). The multiple ELs emerged, expanded, and then declined at different time points over the two epidemics, likely driven by immune selection from pertussis vaccination and natural infection in addition to local and global transmission events. Both hard and soft selective sweeps through vaccine selection pressures determined the current B. pertussis population dynamics. Relative risk analysis found that once a new B. pertussis lineage emerged, it was more likely to spread locally within the first 1.5 years. However, after 1.5 years, any new lineage was likely to expand to a wider region and became no longer spatially structured across the country. Phylogenetic analysis revealed the expansion of ptxP3 strains was also associated with replacement of the type III secretion system allele bscI1 with bscI3. This study advanced our understanding of the epidemic population structure and spatial and temporal dynamics of B. pertussis in a highly immunised population.


Author(s):  
Charles D. Humphrey ◽  
E. H. Cook ◽  
Karen A. McCaustland ◽  
Daniel W. Bradley

Enterically transmitted non-A, non-B hepatitis (ET-NANBH) is a type of hepatitis which is increasingly becoming a significant world health concern. As with hepatitis A virus (HAV), spread is by the fecal-oral mode of transmission. Until recently, the etiologic agent had not been isolated and identified. We have succeeded in the isolation and preliminary characterization of this virus and demonstrating that this agent can cause hepatic disease and seroconversion in experimental primates. Our characterization of this virus was facilitated by immune (IEM) and solid phase immune electron microscopic (SPIEM) methodologies.Many immune electron microscopy methodologies have been used for morphological identification and characterization of viruses. We have previously reported a highly effective solid phase immune electron microscopy procedure which facilitated identification of hepatitis A virus (HAV) in crude cell culture extracts. More recently we have reported utilization of the method for identification of an etiologic agent responsible for (ET-NANBH).


1990 ◽  
Vol 265 (11) ◽  
pp. 6118-6125
Author(s):  
J Pevsner ◽  
V Hou ◽  
A M Snowman ◽  
S H Snyder

Sign in / Sign up

Export Citation Format

Share Document