scholarly journals Optimizing the Extraction of Dietary Fibers from Sorghum Bran Using Response Surface Methodology

2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
Ange-Patrice Takoudjou Miafo ◽  
Benoît Bargui Koubala ◽  
Germain Kansci ◽  
Brice Ulrich Foudjo Saha ◽  
Elie Fokou

Response surface methodology was used to optimize the processing parameters of the fiber extraction from sorghum bran. The studied independent factors were ethanol/bran ratio, time, temperature, and number of treatment cycles. A three-level four-variable Box-Behnken design (BBD) was used to establish the optimum conditions of extraction. The results showed that the experimental data could be fitted to a second-order polynomial equation using multiple regression analysis and the model was highly significant (P<0.0001). The optimum extraction conditions were 11.8 mL·g−1 of ethanol/bran ratio, 60 min, 65°C, and 7 extraction cycles. The experimental yield was 35.52% which is close to the value predicted by the BBD model (34.36%). By applying the two combinations of factors generated by the path of steepest descent, the first combination (12 mL/g, 60 min, 65°C, and 8 cycles) allowed a yield of 35.50%, while the second (11 mL/g, 70 min, 55°C, and 8 cycles) exhibited a yield of 39.90% which is higher than that from the BBD model (P<0.05). Compared to the first combination generated by the path of steepest descent, the BBD model conditions were economical with small number of cycles and low ethanol/bran ratio.

2014 ◽  
Vol 20 (4) ◽  
pp. 579-585 ◽  
Author(s):  
Ai-Shi Zhu ◽  
Jin-Na Ye ◽  
Fei-Na Yan

The experiment of extraction of polysaccharide from foxtail millet was investigated. Response Surface Methodology (RSM),based on a threelevel, three variablesBox-Behnken design (BBD), was employed to obtain the best possible combination of liquid-solid ratio(X1: 15.0-25.0 mL?g-1),extraction time (X2: 1.5-2.5h), and extraction temperature (X3: 65.0-75.0?C)for maximum polysaccharide yields. The experimental data obtained were fitted to a second-order polynomial equation using multiple regression analysis and also analyzed by appropriate statistical methods (ANOVA). The optimum extraction conditions were as follows: liquid-solid ratio 20.7mL?g-1, extraction time 2.0h, extraction temperature 72.3?C. Under these conditions, the experimental yield was 8.08mg?g-1, which is well in close agreement with8.02mg?g-1predicted value by the model.


2013 ◽  
Vol 655-657 ◽  
pp. 1987-1995
Author(s):  
Yue Xiao ◽  
He Ping Yu ◽  
Li Jing Lin

An ultrasonic-assisted procedure for the extraction of polysaccharides from Melaleuca ahemifolia was investigated using response surface methodology (RSM). A Box–Behnken design (BBD) was employed to investigate the effects of extraction time, ratio of water to raw material and ultrasonic power on the extraction yield of polysaccharides.The statistical analysis indicated that three variables and the quadratic terms had significant effects on the yield (p<0.05). The experimental data obtained were fitted to a second-order polynomial equation using multiple regression analysis and further analyzed by appropriate statistical methods (ANOVA). The optimum extraction conditions were as follows: extraction time of 21 min, ratio of water to raw material of 40, ultrasonic power of 170 W. Under the optimization conditions, the experimental yield of polysaccharides was 6.194%, which was in good agreement with the predicted value (6.288%).


2017 ◽  
Vol 68 (2) ◽  
pp. 331-336
Author(s):  
Gabriela Isopencu ◽  
Mirela Marfa ◽  
Iuliana Jipa ◽  
Marta Stroescu ◽  
Anicuta Stoica Guzun ◽  
...  

Nigella sativa, also known as black cumin, an annual herbaceous plant growing especially in Mediterranean countries, has recently gained considerable interest not only for its use as spice and condiment but also for its healthy properties of the fixed and essential oil and its potential as a biofuel. Nigella sativa seeds fixed oil, due to its high content in linoleic acid followed by oleic and palmitic acid, could be beneficial to human health. The objective of this study is to determine the optimum conditions for the solvent extraction of Nigella sativa seeds fixed oil using a three-level, three-factor Box-Behnken design (BBD) under response surface methodology (RSM). The obtained experimental data, fitted by a second-order polynomial equation were analysed by Pareto analysis of variance (ANOVA). From a total of 10 coefficients of the statistical model only 5 are important. The obtained experimental values agreed with the predicted ones.


2018 ◽  
Vol 8 (1) ◽  
pp. 31-42
Author(s):  
M. Amimour ◽  
T. Idoui ◽  
A. Cheriguene

The Aim of this study was to develop an optimized method for manufacturing process of traditional Algerian Jben cheese, using response surface methodology (RSM). In order to develop the objective method of making this traditional cheese, several factors have been studied and a Plackett-Burman statistical design was applied. The effects of the four screened factors (enrichment with milk powder, 10 - 20 g/l; pH of milk, 5.75 - 6.75, enzymatic extract dose, 0.5 - 1.5 ml and coagulation temperature 40 - 60 °C) on the response were investigated, using a Box-Behnken statistical design. Multiple regression analysis was used so that experimental data fits to a second-order polynomial equation. This multiple analysis showed that the model explains about 90.73% of the variation. Based on statistical results, it can be noticed that enrichment with milk powder and pH of milk (Ë‚0.0001***) were highly significant factor influincing cheese yield. The optimal production parame-ters that maximized cheese product (20 g/l enrichment with milk powder, 5.75 pH of milk, 1.29 ml enzymatic extract dose and 60°C coagulation temperature) and the maximal predicted cheese yield (52.68 % ) were found out through response surface methodology. Under these conditions, a verification experiment was carried out and cheese yield was found to be 49.46 %. The overall percentage of agreement for the experimental results (more than 93 % validity) with the predicted values indicates the validation of the statistical model and the success of the optimization process.


2017 ◽  
Vol 16 (1) ◽  
pp. 20-26 ◽  
Author(s):  
Xinhong Liang ◽  
Junjian Ran ◽  
Junliang Sun ◽  
Tianlin Wang ◽  
Zhonggao Jiao ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document