scholarly journals Numerical Study on Similarity of Plume’s Infrared Radiation from Reduced Scaling Solid Rocket

2015 ◽  
Vol 2015 ◽  
pp. 1-11 ◽  
Author(s):  
Xiaoying Zhang ◽  
Rui Li

Similarity of plume radiation between reduced scaling solid rocket models and full scale ones in ground conditions has been taken for investigation. Flow and radiation of plume from solid rockets with scaling ratio from 0.1 to 1 have been computed. The radiative transfer equation (RTE) is solved by the finite volume method (FVM) in infrared band 2~6 μm. The spectral characteristics of plume gases have been calculated with the weighted-sum-of-gray-gas (WSGG) model, and those of the Al2O3particles have been solved by the Mie scattering model. Our research shows that, with the decreasing scaling ratio of the rocket engine, the radiation intensity of the plume decreases with 1.5~2.5 power of the scaling ratio. The infrared radiation of the plume gases shows a strong spectral dependency, while that of the Al2O3particles shows grey property. Spectral radiation intensity of the high temperature core of the solid rocket plume increases greatly in the peak absorption spectrum of plume gases. Al2O3particle is the major radiation composition in the rocket plume, whose scattering coefficient is much larger than its absorption coefficient. There is good similarity between spectral variations of plumes from different scaling solid rockets. The directional plume radiation rises with the increasing azimuth angle.

2014 ◽  
Vol 30 (1) ◽  
pp. 164-174 ◽  
Author(s):  
Jean-Baptiste Dargaud ◽  
Julien Troyes ◽  
Jean-Michel Lamet ◽  
Lionel Tessé ◽  
François Vuillot ◽  
...  

2015 ◽  
Vol 2015 ◽  
pp. 1-10 ◽  
Author(s):  
Wen-Zheng Wang ◽  
Yan-Ming Wang ◽  
Guo-Qing Shi ◽  
De-Ming Wang

Coal dust seriously threatens the safety and occupational health of coal mines. Numerical simulation research on the infrared radiation characteristics of diffused coal dust is carried out in fully mechanized working faces based on the optical monitoring problem of dust particles in mine atmospheric environments. The CFD method is applied to obtain the law of dust transport and distribution. Combined with Mie scattering model, the infrared radiation change characteristics and spectral selection of diffused coal dust particles are simulated and analyzed along the working face. The comparison results show the following: the attenuation and scattering characteristics of mine dust particles system are first enhanced, and then they weaken as the distance from dust source increases. The infrared attenuation of mine dust at the center of the vertical cross-section is generally greater than that at the roof and floor in the same location. The dispersion of mine dust directly determines the attenuation contribution of respirable dust to total dust. Moreover, the infrared absorption effect of functional groups in coal causes the infrared attenuation effect of coal dust to have obvious optical selectivity along the roadway, the existing optical “window.”


1992 ◽  
Author(s):  
W. MCGREGOR ◽  
J. DRAKES ◽  
K. BEALE ◽  
F. SHERRELL

Energies ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 4158
Author(s):  
Haiyan Yu ◽  
Haochun Zhang ◽  
Heming Wang ◽  
Dong Zhang

Currently, there are few studies on the influence of microscale thermal radiation on the equivalent thermal conductivity of microscale porous metal. Therefore, this paper calculated the equivalent thermal conductivity of high-porosity periodic cubic silver frame structures with cell size from 100 nm to 100 µm by using the microscale radiation method. Then, the media radiation characteristics, absorptivity, reflectivity and transmissivity were discussed to explain the phenomenon of the radiative thermal conductivity changes. Furthermore, combined with spectral radiation properties at the different cross-sections and wavelength, the radiative transmission mechanism inside high-porosity periodic cubic frame silver structures was obtained. The results showed that the smaller the cell size, the greater radiative contribution in total equivalent thermal conductivity. Periodic cubic silver frames fluctuate more in the visible band and have better thermal radiation modulation properties in the near infrared band, which is formed by the Surface Plasmon Polariton and Magnetic Polaritons resonance jointly. This work provides design guidance for the application of this kind of periodic microporous metal in the field of thermal utilization and management.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Zongyao Yang ◽  
Yong Shan ◽  
Jingzhou Zhang

Purpose This study aims to investigate the effects of exhaust direction on exhaust plume and helicopter infrared radiation in hover and cruise status. Design/methodology/approach Four exhaust modes are concerned, and the external flow field and fuselage temperature field are calculated by numerical simulation. The infrared radiation intensity distributions of the four models in hovering and cruising states are computed by the ray-tracing method. Findings Under the hover status, the exhaust plume is deflected to flow downward after it exhausts from the nozzle exit, upon the impact of the main-rotor downwash. Besides, the exhaust plume shows a “swirling” movement following the main-rotor rotational direction. The forward-flight flow helps prevent the hot exhaust plume from a collision with the helicopter fuselage generally for the cruise status. In general, the oblique-upward exhaust mode provides moderate infrared radiation intensities in all of the viewing directions, either under the hover or the cruise status. Compared with the hover status, the infrared radiation intensity distribution alters somewhat in cruise. Originality/value Illustrating the influences of exhaust direction on plume flow and helicopter infrared radiation and the differences of helicopter infrared radiation under hover and cruise statuses are identified. Finally, an appropriate exhaust mode is proposed to provide a better IR signature distribution.


2013 ◽  
Vol 13 (4) ◽  
pp. 10757-10807 ◽  
Author(s):  
F. Chane Ming ◽  
C. Ibrahim ◽  
S. Jolivet ◽  
P. Keckhut ◽  
Y.-A. Liou ◽  
...  

Abstract. Activity and spectral characteristics of gravity-waves (GWs) are analyzed during tropical cyclone (TC) Ivan (2008) in the troposphere and lower stratosphere using radiosonde and GPS radio occultation data, ECMWF outputs and simulations of French numerical model Meso-NH with vertical resolution varying between 150 m near the surface and 500 m in the lower stratosphere. Conventional methods for GW analysis and signal and image processing tools provide information on a wide spectrum of GWs with horizontal wavelengths of 40–1800 km and short vertical wavelengths of 0.6–10 km respectively and periods of 20 min–2 days. MesoNH model, initialized with Aladin-Réunion analyses, produces realistic and detailed description of TC dynamics, GWs, variability of the tropospheric and stratospheric background wind and TC rainband characteristics at different stages of TC Ivan. In particular a dominant eastward propagating TC-related quasi-inertia GW is present during intensification of TC Ivan with horizontal and vertical wavelengths of 400–600 km and 1.5–3.5 km respectively during intensification. A wavenumber-1 vortex Rossby wave is identified as a source of this medium-scale mode while short-scale modes located at north-east and south-east of the TC could be attributed to strong localized convection in spiral bands resulting from wavenumber-2 vortex Rossby waves. Meso-NH simulations also reveal high-frequency GWs with horizontal wavelengths of 20–80 km near the TC eye and high-frequency GWs-related clouds behind TC Ivan. In addition, GWs produced during landfall are likely to strongly contribute to background wind in the middle and upper troposphere as well as the stratospheric quasi-biennial oscillation.


Sign in / Sign up

Export Citation Format

Share Document