scholarly journals A Customizable Quantum-Dot Cellular Automata Building Block for the Synthesis of Classical and Reversible Circuits

2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Ahmed Moustafa ◽  
Ahmed Younes ◽  
Yasser F. Hassan

Quantum-dot cellular automata (QCA) are nanoscale digital logic constructs that use electrons in arrays of quantum dots to carry out binary operations. In this paper, a basic building block for QCA will be proposed. The proposed basic building block can be customized to implement classical gates, such as XOR and XNOR gates, and reversible gates, such as CNOT and Toffoli gates, with less cell count and/or better latency than other proposed designs.

2020 ◽  
Vol 9 (1) ◽  
pp. 2659-2662

A much-required breakthrough in the field of VLSI took place with the birth of Quantum-dot cellular automata (QCA) technology, an impressive amalgamation of Quantum Physics and Nanotechnology and acted as a possible replacement to the age-old semiconductor transistor-based designs (CMOS) with Boolean paradigm. In this paper, we aim at implementing this technology to build a robust 8:1 multiplexer that can help in building and developing many more digital logic circuits, from an already proposed 2:1 multiplexer. It has excellent efficiency with respect to least cell count, latency, space and power dissipation.


2001 ◽  
Vol 696 ◽  
Author(s):  
Gregory L. Snider ◽  
Alexei O. Orlov ◽  
Ravi K. Kummamuru ◽  
Rajagopal Ramasubramaniam ◽  
Islamshah Amlani ◽  
...  

AbstractAn overview is given of the quantum-dot cellular automata (QCA) architecture, along with a summary of experimental demonstrations of QCA devices. QCA is a transistorless computation paradigm that can provide a solution to such challenging issues as device and power density. The basic building blocks of the QCA architecture, such as AND, OR gates and clocked cells have been demonstrated and will be presented here. The quantum dots used in the experiments to date are metal islands that are coupled by capacitors and tunnel junctions, and devices operate only at very low temperatures. For QCA to be used in practical devices, the operating temperature must be raised, and issues such as background charge must be addressed. An introduction will be given to these issues and possible solutions.


1999 ◽  
Vol 86 (5) ◽  
pp. 549-590 ◽  
Author(s):  
WOLFGANG POROD ◽  
CRAIGS LENT ◽  
GARY H. BERNSTEIN ◽  
ALEXEI O. ORLOV ◽  
ISLAMSHA HAMLANI ◽  
...  

Circuit World ◽  
2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Sadat Riyaz ◽  
Vijay Kumar Sharma

Purpose This paper aims to propose the reversible Feynman and double Feynman gates using quantum-dot cellular automata (QCA) nanotechnology with minimum QCA cells and latency which minimizes the circuit area with the more energy efficiency. Design/methodology/approach The core aim of the QCA nanotechnology is to build the high-speed, energy efficient and as much smaller devices as possible. This brings a challenge for the designers to construct the designs that fulfill the requirements as demanded. This paper proposed a new exclusive-OR (XOR) gate which is then used to implement the logical operations of the reversible Feynman and double Feynman gates using QCA nanotechnology. Findings QCA designer-E has been used for the QCA designs and the simulation results. The proposed QCA designs have less latency, occupy less area and have lesser cell count as compared to the existing ones. Originality/value The latencies of the proposed gates are 0.25 which are improved by 50% as compared to the best available design as reported in the literature. The cell count in the proposed XOR gate is 11, while it is 14 in Feynman gate and 27 in double Feynman gate. The cell count for the proposed designs is minimum as compared to the best available designs.


2003 ◽  
Vol 34 (3-6) ◽  
pp. 195-203 ◽  
Author(s):  
C.G Smith ◽  
S Gardelis ◽  
A.W Rushforth ◽  
R Crook ◽  
J Cooper ◽  
...  

1997 ◽  
Vol 07 (10) ◽  
pp. 2199-2218 ◽  
Author(s):  
Wolfgang Porod

We discuss novel nanoelectronic architecture paradigms based on cells composed of coupled quantum-dots. Boolean logic functions may be implemented in specific arrays of cells representing binary information, the so-called Quantum-Dot Cellular Automata (QCA). Cells may also be viewed as carrying analog information and we outline a network-theoretic description of such Quantum-Dot Nonlinear Networks (Q-CNN). In addition, we discuss possible realizations of these structures in a variety of semiconductor systems (including GaAs/AlGaAs, Si/SiGe, and Si/SiO 2), rings of metallic tunnel junctions, and candidates for molecular implementations.


Sign in / Sign up

Export Citation Format

Share Document