scholarly journals Recognizing Cursive Typewritten Text Using Segmentation-Free System

2015 ◽  
Vol 2015 ◽  
pp. 1-7 ◽  
Author(s):  
Mohammad S. Khorsheed

Feature extraction plays an important role in text recognition as it aims to capture essential characteristics of the text image. Feature extraction algorithms widely range between robust and hard to extract features and noise sensitive and easy to extract features. Among those feature types are statistical features which are derived from the statistical distribution of the image pixels. This paper presents a novel method for feature extraction where simple statistical features are extracted from a one-pixel wide window that slides across the text line. The feature set is clustered in the feature space using vector quantization. The feature vector sequence is then injected to a classification engine for training and recognition purposes. The recognition system is applied to a data corpus which includes cursive Arabic text of more than 600 A4-size sheets typewritten in multiple computer-generated fonts. The system performance is compared to a previously published system from the literature with a similar engine but a different feature set.

2021 ◽  
pp. 3182-3195
Author(s):  
Maha A. Rajab ◽  
Loay E. George

     One major problem facing some environments, such as insurance companies and government institutions, is when a massive amount of documents has to be processed every day. Thus, an automatic stamp recognition system is necessary. The extraction and recognition of a general stamp is not a simple task because it may have various shapes, sizes, backgrounds, patterns, and colors. Moreover, the stamp can be printed on documents with bad quality and rotation with various angles. Our proposed method presents a new approach for the preprocessing and recognition of color stamp images. It consists of four stages, which are stamp extraction, preprocessing, feature extraction, and matching. Stamp extraction is achieved to isolate complex background and remove unwanted data or noise that is surrounding the stamp area. The preprocessing stage is necessary to improve the stamp brightness and eliminate the rotation that occurs during the stamping process. In feature extraction, the extracted information will be representing the desirable feature vector in order to discriminate between stamps using local distribution of statistical features and Haar wavelet with histogram moment. Finally, each extracted feature vector will be saved in the dedicated system database for matching purpose. The test results indicate that the proposed system provides a high recognition rate for two sets of the proposed features (i.e., 99.29% recognition rate for the local distribution of statistical features and 96.01% recognition rate for the Haar wavelet transform with histogram and moment).


Robotica ◽  
1992 ◽  
Vol 10 (3) ◽  
pp. 241-254
Author(s):  
M. Mehdian

SUMMARYA binary tactile image feature extraction algorithm using image primitive notation and perceptrons is presented. The basic image segments are defined as geometric factors by which the image structure is described so that effective feature values such as image shape, image size, perimeter and texture may be extracted on the basis of local image computation. The local property of the tactile image computation is evaluated by the concept called order of the perceptrons and based on this feature extraction algorithm, an efficient tactile image recognition system is realised.


Author(s):  
Yoshihiro Hayakawa ◽  
Takanori Oonuma ◽  
Hideyuki Kobayashi ◽  
Akiko Takahashi ◽  
Shinji Chiba ◽  
...  

In deep neural networks, which have been gaining attention in recent years, the features of input images are expressed in a middle layer. Using the information on this feature layer, high performance can be demonstrated in the image recognition field. In the present study, we achieve image recognition, without using convolutional neural networks or sparse coding, through an image feature extraction function obtained when identity mapping learning is applied to sandglass-style feed-forward neural networks. In sports form analysis, for example, a state trajectory is mapped in a low-dimensional feature space based on a consecutive series of actions. Here, we discuss ideas related to image analysis by applying the above method.


Author(s):  
WEI LI ◽  
NASSER M. NASRABADI

A neural network of cascaded Restricted Coulomb Energy (RCE) nets is constructed for the recognition of two-dimensional objects. A number of RCE nets are cascaded together to form a classifier where the overlapping decision regions are progressively resolved by a set of cascaded networks. Similarities among objects which have complex decision boundaries in the feature space are resolved by this multi-net approach. The generalization ability of an RCE net recognition system, referring to the ability of the system to correctly recognize a new pattern even when the number of learning exemplars is small, is increased by the proposed coarse-to-fine learning strategy. A feature extraction technique is used to map the geometrical shape information of an object into an ordered feature vector of fixed length. This feature vector is then used as an input to the neural network. The feature vector is invariant to object changes such as positional shift, rotation, scaling, illumination variance, variation of camera setup, perspective distortion, and noise distortion. Experimental results for recognition of several objects are also presented. A correct recognition rate of 100% was achieved for both the training and the testing input patterns.


2014 ◽  
Vol 519-520 ◽  
pp. 577-580
Author(s):  
Shuai Yuan ◽  
Guo Yun Zhang ◽  
Jian Hui Wu ◽  
Long Yuan Guo

Fingerprint image feature extraction is a critical step to fingerprint recognition system, which studies topological structure, mathematical model and extraction algorithm of fingerprint feature. This paper presents system design and realization of feature extraction algorithm for fingerprint image. On the basis of fingerprint skeleton image, feature points including ending points, bifurcation points and singular points are extracted at first. Then false feature points are detected and eliminated by the violent changes of ambient orientation field. True feature points are marked at last. Test result shows that the method presented has good accuracy, quick speed and strong robustness for realtime application.


2020 ◽  
Vol 2020 ◽  
pp. 1-21 ◽  
Author(s):  
Hong Yang ◽  
Yasheng Zhang ◽  
Wenzhe Ding

Feature extraction is the key step of Inverse Synthetic Aperture Radar (ISAR) image recognition. However, limited by the cost and conditions of ISAR image acquisition, it is relatively difficult to obtain large-scale sample data, which makes it difficult to obtain target deep features with good discriminability by using the currently popular deep learning method. In this paper, a new method for low-dimensional, strongly robust, and fast space target ISAR image recognition based on local and global structural feature fusion is proposed. This method performs the trace transformation along the longest axis of the ISAR image to generate the global trace feature of the space target ISAR image. By introducing the local structural feature, Local Binary Pattern (LBP), the complementary fusion of the global and local features is achieved, which makes up for the missing structural information of the trace feature and ensures the integrity of the ISAR image feature information. The representation of trace and LBP features in a low-dimensional mapping feature space is found by using the manifold learning method. Under the condition of maintaining the local neighborhood relationship in the original feature space, the effective fusion of trace and LBP features is achieved. So, in the practical application process, the target recognition accuracy is no longer affected by trace function, LBP feature block number selection, and other factors, realizing the high robustness of the algorithm. To verify the effectiveness of the proposed algorithm, an ISAR image database containing 1325 samples of 5 types of space targets is used for experiments. The results show that the classification accuracy of the 5 types of space targets can reach more than 99%, and the recognition accuracy is no longer affected by the trace feature and LBP feature selection, which has strong robustness. The proposed method provides a fast and effective high-precision model for space target feature extraction, which can give some references for solving the problem of space object efficient identification under the condition of small sample data.


2013 ◽  
Vol 756-759 ◽  
pp. 3157-3161 ◽  
Author(s):  
Qing Liu ◽  
Li Ming Zhao ◽  
Li Jun Zhang

In order to better extract image feature and recognition, a novel feature extraction algorithm of the binary image processing using Otsu combined with normalized moment of inertia (NMI) is put forward. Firstly, the image is processed into binary image and the target area is effectively segmented utilizing Otsu algorithm based on the criteria of maximal variance between-class , secondly, the NMI feature of the binary image is extracted, and finally, the extraction NMI feature is used in image recognition. Experimental results show that NMI feature of the binary image have the ability of anti-geometric distortions (translation, rotation and scaling, TRS), and anti-brightness distortions, the novel method have characteristics of simple extraction approach, little extraction parameter, easy implementation, and strong robustness.


2011 ◽  
Vol 121-126 ◽  
pp. 1151-1155
Author(s):  
Zhi Yuan Chen ◽  
Gang Luo ◽  
Zhi Gen Fei

The image segmentation technology has been extensively applied in many fields. As the foundation of image identification, the effective image segmentation plays a significant role during the course of subsequent image processing. Many theories and methods have been presented and discussed about image segmentation, such as K-means and fuzzy C-means methods, method based on regions information, method based on image edge detection, etc. In this work, it is proposed to apply Bayesian decision-making theory based on minimum error probability to gray image segmentation. The approach to image segmentation can guarantee the segmentation error probability minimum, which is generally what we desire. On the assumption that the gray values accord with the probability distribution of Gaussian finite mixture model in image feature space, EM algorithm is used to estimate the parameters of mixture model. In order to improve the convergence speed of EM algorithm, a novel method called weighted equal interval sampling is presented to obtain the contracted sample set. Consequently, the computation burden of EM algorithm is greatly reduced. The final experiments demonstrate the feasibility and high effectiveness of the method.


Author(s):  
H Li ◽  
P Zhou ◽  
Z Zhang

In this article, a new method of pattern recognition for machine working conditions is presented that is based on time-frequency image (TFI) feature extraction and support vector machines (SVMs). In this study, the Hilbert time-frequency spectrum (HTFS) is used to construct TFIs because of its good performance in non-stationary and non-linear signal analysis. Cyclostationarity signal analysis is a pre-processing method for improving the performance of the HTFS in the construction of TFIs. Feature extraction for TFIs is investigated in detail to construct a feature vector for pattern recognition. Gravity centre and information entropy of TFIs are used to construct the feature vector for pattern recognition. SVMs are used for different working conditions classification by the constructed feature vector because of its powerful performance even for small samples. In the end, rolling bearing pattern recognition is used as an example to testify the effectiveness of this method. According to the result analysis, it can be concluded that this method will contribute to the development of preventative maintenance.


Sign in / Sign up

Export Citation Format

Share Document