scholarly journals A Fast Recognition Method for Space Targets in ISAR Images Based on Local and Global Structural Fusion Features with Lower Dimensions

2020 ◽  
Vol 2020 ◽  
pp. 1-21 ◽  
Author(s):  
Hong Yang ◽  
Yasheng Zhang ◽  
Wenzhe Ding

Feature extraction is the key step of Inverse Synthetic Aperture Radar (ISAR) image recognition. However, limited by the cost and conditions of ISAR image acquisition, it is relatively difficult to obtain large-scale sample data, which makes it difficult to obtain target deep features with good discriminability by using the currently popular deep learning method. In this paper, a new method for low-dimensional, strongly robust, and fast space target ISAR image recognition based on local and global structural feature fusion is proposed. This method performs the trace transformation along the longest axis of the ISAR image to generate the global trace feature of the space target ISAR image. By introducing the local structural feature, Local Binary Pattern (LBP), the complementary fusion of the global and local features is achieved, which makes up for the missing structural information of the trace feature and ensures the integrity of the ISAR image feature information. The representation of trace and LBP features in a low-dimensional mapping feature space is found by using the manifold learning method. Under the condition of maintaining the local neighborhood relationship in the original feature space, the effective fusion of trace and LBP features is achieved. So, in the practical application process, the target recognition accuracy is no longer affected by trace function, LBP feature block number selection, and other factors, realizing the high robustness of the algorithm. To verify the effectiveness of the proposed algorithm, an ISAR image database containing 1325 samples of 5 types of space targets is used for experiments. The results show that the classification accuracy of the 5 types of space targets can reach more than 99%, and the recognition accuracy is no longer affected by the trace feature and LBP feature selection, which has strong robustness. The proposed method provides a fast and effective high-precision model for space target feature extraction, which can give some references for solving the problem of space object efficient identification under the condition of small sample data.

Author(s):  
Yoshihiro Hayakawa ◽  
Takanori Oonuma ◽  
Hideyuki Kobayashi ◽  
Akiko Takahashi ◽  
Shinji Chiba ◽  
...  

In deep neural networks, which have been gaining attention in recent years, the features of input images are expressed in a middle layer. Using the information on this feature layer, high performance can be demonstrated in the image recognition field. In the present study, we achieve image recognition, without using convolutional neural networks or sparse coding, through an image feature extraction function obtained when identity mapping learning is applied to sandglass-style feed-forward neural networks. In sports form analysis, for example, a state trajectory is mapped in a low-dimensional feature space based on a consecutive series of actions. Here, we discuss ideas related to image analysis by applying the above method.


Author(s):  
Yoshihiro Hayakawa ◽  
Takanori Oonuma ◽  
Hideyuki Kobayashi ◽  
Akiko Takahashi ◽  
Shinji Chiba ◽  
...  

In deep neural networks, which have been gaining attention in recent years, the features of input images are expressed in a middle layer. Using the information on this feature layer, high performance can be demonstrated in the image recognition field. In the present study, we achieve image recognition, without using convolutional neural networks or sparse coding, through an image feature extraction function obtained when identity mapping learning is applied to sandglass-style feed-forward neural networks. In sports form analysis, for example, a state trajectory is mapped in a low-dimensional feature space based on a consecutive series of actions. Here, we discuss ideas related to image analysis by applying the above method.


2021 ◽  
Vol 2083 (4) ◽  
pp. 042007
Author(s):  
Xiaowen Liu ◽  
Juncheng Lei

Abstract Image recognition technology mainly includes image feature extraction and classification recognition. Feature extraction is the key link, which determines whether the recognition performance is good or bad. Deep learning builds a model by building a hierarchical model structure like the human brain, extracting features layer by layer from the data. Applying deep learning to image recognition can further improve the accuracy of image recognition. Based on the idea of clustering, this article establishes a multi-mix Gaussian model for engineering image information in RGB color space through offline learning and expectation-maximization algorithms, to obtain a multi-mix cluster representation of engineering image information. Then use the sparse Gaussian machine learning model on the YCrCb color space to quickly learn the distribution of engineering images online, and design an engineering image recognizer based on multi-color space information.


2019 ◽  
Vol 2019 ◽  
pp. 1-19
Author(s):  
Mingai Li ◽  
Hongwei Xi ◽  
Xiaoqing Zhu

Due to the nonlinear and high-dimensional characteristics of motor imagery electroencephalography (MI-EEG), it can be challenging to get high online accuracy. As a nonlinear dimension reduction method, landmark maximum variance unfolding (L-MVU) can completely retain the nonlinear features of MI-EEG. However, L-MVU still requires considerable computation costs for out-of-sample data. An incremental version of L-MVU (denoted as IL-MVU) is proposed in this paper. The low-dimensional representation of the training data is generated by L-MVU. For each out-of-sample data, its nearest neighbors will be found in the high-dimensional training samples and the corresponding reconstruction weight matrix be calculated to generate its low-dimensional representation as well. IL-MVU is further combined with the dual-tree complex wavelet transform (DTCWT), which develops a hybrid feature extraction method (named as IL-MD). IL-MVU is applied to extract the nonlinear features of the specific subband signals, which are reconstructed by DTCWT and have the obvious event-related synchronization/event-related desynchronization phenomenon. The average energy features of α and β waves are calculated simultaneously. The two types of features are fused and are evaluated by a linear discriminant analysis classifier. Based on the two public datasets with 12 subjects, extensive experiments were conducted. The average recognition accuracies of 10-fold cross-validation are 92.50% on Dataset 3b and 88.13% on Dataset 2b, and they gain at least 1.43% and 3.45% improvement, respectively, compared to existing methods. The experimental results show that IL-MD can extract more accurate features with relatively lower consumption cost, and it also has better feature visualization and self-adaptive characteristics to subjects. The t-test results and Kappa values suggest the proposed feature extraction method reaches statistical significance and has high consistency in classification.


2020 ◽  
pp. 147387162097820
Author(s):  
Haili Zhang ◽  
Pu Wang ◽  
Xuejin Gao ◽  
Yongsheng Qi ◽  
Huihui Gao

T-distributed stochastic neighbor embedding (t-SNE) is an effective visualization method. However, it is non-parametric and cannot be applied to steaming data or online scenarios. Although kernel t-SNE provides an explicit projection from a high-dimensional data space to a low-dimensional feature space, some outliers are not well projected. In this paper, bi-kernel t-SNE is proposed for out-of-sample data visualization. Gaussian kernel matrices of the input and feature spaces are used to approximate the explicit projection. Then principal component analysis is applied to reduce the dimensionality of the feature kernel matrix. Thus, the difference between inliers and outliers is revealed. And any new sample can be well mapped. The performance of the proposed method for out-of-sample projection is tested on several benchmark datasets by comparing it with other state-of-the-art algorithms.


2015 ◽  
Vol 2015 ◽  
pp. 1-7 ◽  
Author(s):  
Mohammad S. Khorsheed

Feature extraction plays an important role in text recognition as it aims to capture essential characteristics of the text image. Feature extraction algorithms widely range between robust and hard to extract features and noise sensitive and easy to extract features. Among those feature types are statistical features which are derived from the statistical distribution of the image pixels. This paper presents a novel method for feature extraction where simple statistical features are extracted from a one-pixel wide window that slides across the text line. The feature set is clustered in the feature space using vector quantization. The feature vector sequence is then injected to a classification engine for training and recognition purposes. The recognition system is applied to a data corpus which includes cursive Arabic text of more than 600 A4-size sheets typewritten in multiple computer-generated fonts. The system performance is compared to a previously published system from the literature with a similar engine but a different feature set.


2018 ◽  
Author(s):  
Clinton Haarlem ◽  
Rutger Vos

AbstractMosquitoes are important disease vectors. Different mosquito genera are associated with different diseases at varying levels of specificity. Hence, quick and low-cost methods of identification, even if relatively coarse and to genus level, will be of use in assessing risk and informing mitigation measures. Here we assess the extent to which digital photographs of mosquito wings taken with common cell phone cameras and clip-on lenses can be used to discriminate among mosquito genera when fed into image feature extraction algorithms. Our results show that genera may be distinguished on the basis of features extracted using the SURF algorithm. However, we also found that the naïve features examined here require very standardized photography and that different phone cameras have different signatures that may need to be taken into account.


2021 ◽  
pp. 1-12
Author(s):  
Haoyue Bai ◽  
Haofeng Zhang ◽  
Qiong Wang

Zero Shot learning (ZSL) aims to use the information of seen classes to recognize unseen classes, which is achieved by transferring knowledge of the seen classes from the semantic embeddings. Since the domains of the seen and unseen classes do not overlap, most ZSL algorithms often suffer from domain shift problem. In this paper, we propose a Dual Discriminative Auto-encoder Network (DDANet), in which visual features and semantic attributes are self-encoded by using the high dimensional latent space instead of the feature space or the low dimensional semantic space. In the embedded latent space, the features are projected to both preserve their original semantic meanings and have discriminative characteristics, which are realized by applying dual semantic auto-encoder and discriminative feature embedding strategy. Moreover, the cross modal reconstruction is applied to obtain interactive information. Extensive experiments are conducted on four popular datasets and the results demonstrate the superiority of this method.


Deep learning has attracted more and more attention in speech recognition, visual recognition and other fields. In the field of image processing, using deep learning method can obtain high recognition rate. In this paper, the convolution neural network is used as the basic model of deep learning. The shortcomings of the model are analyzed, and the DBN is used for the image recognition of diseases and insect pests. In the experiment, firstly, we select 10 kinds of disease and pest leaves and 50000 normal leaves, each of which is used for the comparison of algorithm performance.In the judgment of disease and pest species, the algorithm proposed in this study can identify all kinds of diseases and insect pests to the maximum extent, but the corresponding software (openCV, Access) recognition accuracy will gradually reduce along with the increase of the types of diseases and insect pests. In this study, the algorithm proposed in the identification of diseases and insect pests has been kept at about 45%.


2016 ◽  
Vol 2016 ◽  
pp. 1-16 ◽  
Author(s):  
Li Jiang ◽  
Shunsheng Guo

The high-dimensional features of defective bearings usually include redundant and irrelevant information, which will degrade the diagnosis performance. Thus, it is critical to extract the sensitive low-dimensional characteristics for improving diagnosis performance. This paper proposes modified kernel marginal Fisher analysis (MKMFA) for feature extraction with dimensionality reduction. Due to its outstanding performance in enhancing the intraclass compactness and interclass dispersibility, MKMFA is capable of effectively extracting the sensitive low-dimensional manifold characteristics beneficial to subsequent pattern classification even for few training samples. A MKMFA- based fault diagnosis model is presented and applied to identify different bearing faults. It firstly utilizes MKMFA to directly extract the low-dimensional manifold characteristics from the raw time-series signal samples in high-dimensional ambient space. Subsequently, the sensitive low-dimensional characteristics in feature space are inputted into K-nearest neighbor classifier so as to distinguish various fault patterns. The four-fault-type and ten-fault-severity bearing fault diagnosis experiment results show the feasibility and superiority of the proposed scheme in comparison with the other five methods.


Sign in / Sign up

Export Citation Format

Share Document