scholarly journals Formulation and In Vitro Evaluation of Bilayer Tablets of Nebivolol Hydrochloride and Nateglinide for the Treatment of Diabetes and Hypertension

2015 ◽  
Vol 2015 ◽  
pp. 1-14 ◽  
Author(s):  
Harika Ryakala ◽  
S. Dineshmohan ◽  
Alluri Ramesh ◽  
V. R. M. Gupta

Diabetes mellitus (DM) and hypertension are two common diseases that often coexist. The most common cause of death in the diabetic patient is heart disease. In the present investigation we combine Nebivolol and Nateglinide for better patient compliance. IR layer was formulated using various superdisintegrants like Crospovidone, Croscarmellose sodium, and sodium starch glycolate and SR layer was formulated using polymers and gums like HPMC E15, ethyl cellulose, Gaur gum, and Xanthan gum. The disintegration and dissolution study of both layers showed that inclusion of surfactant (sodium lauryl sulphate) to the tablet formulation (IR) and dissolution medium (SR) enhanced the release of drugs from both layers. Kinetic studies of optimized IR layer (NBL8) and SR layer (N9) showed good linearity with regression coefficient of 0.9714 (Higuchi model) and 0.9931 (zero order kinetics), respectively. The above results reveal that the optimized IR layer of Nebivolol (NBL8) and SR layer of Nateglinide (N9) might be suitable for the treatment of diabetes and hypertension by sequential release of the two drugs in a bilayer tablet. IR-immediate release, SR-sustain release, NBL8-Nebivolol 8, N9-Nateglinide 9.

Author(s):  
R. SANTOSH KUMAR ◽  
SHAMBHAVI KANDUKURI ◽  
M. RAMYA ◽  
B. KUSUMA LATHA

Objective: To synthesize, characterize and evaluate starch valerate as a superdisintegrant in the formulation of aceclofenac fast dissolving tablets by employing 23 factorial design. Methods: Starch valerate was synthesized and its physical and micromeritic properties were performed to evaluate it. The fast dissolving tablet of aceclofenac was prepared by employing starch valerate as a superdisintegrant in different proportions in each case by direct compression method using 23 factorial design for evaluation of tablet parameters like disintegration and dissolution efficiency in 5 min. Results: The starch valerate prepared was found to be fine, amorphous and free flowing. Starch valerate exhibited good swelling in water with swelling index (125.2%). The study of starch valerate was shown by fourier transform infrared spectra (FTIR). The drug content (200±5%), hardness (3.5–4 kg/sq. cm), and friability (<0.15%) has been effective with regard to all the formulated fast dissolving tablets employing starch valerate. The disintegration time of all the formulated tablets was found to be in the range of 14±0.04 to 25.7±0.02 sec. The optimized formulation F4 had the least disintegration time i.e., 12.8±0.02 sec. The wetting time of the tablets was found to be in the range of 76±0.21 to 217±0.17s. The In vitro wetting time was less (i.e., 28±0.02s) in optimized formulation F4. The water absorption ratio of the formulated tablets was found to be in the range of 46±0.12 to 100±0.27%. The percent drug dissolved in the optimized formulation F8 was found to be 99.93% in 5 min. Conclusion: Starch valerate, when combined with sodium starch glycolate, croscarmellose sodium, with aceclofenac, was found to be an effective super disintegrant which improved the dissolution efficiency and could therefore be used in the formulation of quick dissolving tablets to provide immediate release of the contained drug within 5 min.


Author(s):  
A. HARI OM PRAKASH RAO ◽  
SANTOSH KUMAR RADA ◽  
SHAMBHAVI KANDUKURI

Objective: To synthesize, characterize and evaluate starch crotonate as a superdisintegrant in the formulation of Piroxicam fast dissolving tablets by employing 23 factorial design. Methods: Starch crotonate was synthesized and its physical and micromeritic properties were performed to evaluate it. The fast dissolving tablet of Piroxicam were prepared by employing starch crotonate as a superdisintegrant in different proportions in each case by direct compression method using 23 factorial design. Results: The starch chrotonate prepared was found to be fine, free flowing and amorphous. Starch crotonate exhibited good swelling in water with swelling index (50%). The study of starch crotonate was shown by fourier transform infrared spectra (FTIR). The drug content (100±5%), hardness (3.6–4 kg/sq. cm), and friability (<0.15%) have been effective with regard to all the formulated fast dissolving tablets employing starch crotonate. The disintegration time of all the formulated tablets was found to be in the range of 18±03 to 66±03 sec. The optimized formulation F8 had the least disintegration time i.e., 18±03 sec. The wetting time of the tablets was found to be in the range of 49.92±0.11 to 140±0.18s. The In vitro wetting time was less (i.e., 74±0.37s) in optimized formulation F8. The water absorption ratio of the formulated tablets was found to be in the range of 27.58±0.01 to 123.07±0.33%. The percent drug dissolved in the optimized formulation F8 was found to be 99.83% in 10 min. Conclusion: Starch crotonate, when combined with sodium starch glycolate, croscarmellose sodium, with Piroxicam was found to be an effective super disintegrant which improved the dissolution efficiency and could therefore be used in the formulation of quick dissolving tablets to provide immediate release of the contained drug within 10 min.


Author(s):  
V A. Vamshi Priya ◽  
G. Chandra Sekhara Rao ◽  
D. Srinivas Reddy ◽  
V. Prabhakar Reddy

The purpose of this study was to investigate the efficiency of superdisintegrants: sodium starch glycolate, croscarmellose sodium and crospovidone in promoting tablet disintegration and drug dissolution of Topiramate immediate release tablets. The efficiency of superdisintegrants was tested, by considering four concentrations, viz., like 2%, 3%, 4% and 5% in the formulations. The dissolution was carried out in USP apparatus II at 50 rpm with distilled water as a dissolution medium. The dissolution rate of the model drug topiramate was found highly dependent on the tablet disintegration, on the particle size of the superdisintegrant, on the solubility of the drug and also on the type of superdisintegrant in the dissolution medium. There was no effect of the diluent (Lactose monohydrate) on the disintegration of different concentrations of superdisintegrants. These results suggest that, as determined by the f2 metric (similarity factor), the dissolution profile of the formulation containing 4% sodium starch glycolate and lactose monohydrate as a diluent was similar to that of a marketed product.


Author(s):  
Natarajan R ◽  
N Patel ◽  
Rajendran N N ◽  
M Rangapriya

The main goal of this study was to develop a stable formulation of antihypertensive drugs telmisartan and hydrochlorothiazide as an immediate-release bilayer tablet and to evaluate the dissolution profile in comparison with a reference product. The formulation development work was initiated with wet granulation. Telmisartan was converted to its sodium salt by dissolving in aqueous solution of sodium hydroxide to improve solubility and drug release. Lactose monohydrate and microcrystalline cellulose were used as diluents. Starch paste is prepared in purified water and was used as the binder. Sodium starch glycolate is added as a disintegrating agent. Magnesium stearate was used as the lubricant. The prepared granules were compressed into a double-layer compression machine. The tablets thus formulated with higher proportion of sodium starch glycolate showed satisfactory physical parameters, and it was found to be stable and in vitro release studies are showed that formulation (F-T5H5) was 101.11% and 99.89% respectively. The formulation T5H5 is further selected and compared with the release profile of the innovator product, and was found to be similar (f2 factor) to that of the marketed product. The results suggest the feasibility of developing bilayer tablets consisting of telmisartan and hydrochlorothiazide for the convenience of patients with hypertension.  


2018 ◽  
Vol 10 (1) ◽  
pp. 31-38 ◽  
Author(s):  
S. Karim ◽  
A. Biswas ◽  
A. Bosu ◽  
F. R. Laboni ◽  
A. S. Julie ◽  
...  

Present study aspires at the design of an immediate release formulation with prospective use of fexofenadine hydrochloride by exploring the effect of sodium starch glycolate as super disintegrant. Fexofenadine hydrochloride immediate release tablets (Formulations F-1, F-2, F-3, F-4 and F-5) using different ratios of sodium starch glycolate as a disintegrant were prepared by direct compression method. Standard physicochemical tests were performed for all the formulations. Dissolution studies of the formulations were done in phosphate buffer, pH 6.8 using USP apparatus II (paddle apparatus) at 50 rpm. Percent release of fexofenadine hydrochloride of formulations F-1, F-2, F-3, F-4 and F-5 were 89.98%, 90.98%, 92.95, 96.92% and 99.85%, respectively after 1 h and the release pattern followed the zero order kinetics. The release rate in the formulation F-5 was higher compared to other formulations and the studied market products. Sodium starch glycolate speed up the release of the drug from the core tablets, and the release of fexofenadine hydrochloride from tablets was directly proportional to the amount of sodium starch glycolate present in the formulations and there by produced immediate action.


2015 ◽  
Vol 18 (2) ◽  
pp. 157-162
Author(s):  
Samira Karim ◽  
Mohiuddin Ahmed Bhuiyan ◽  
Md Sohel Rana

This work aims at the design of a sustained release formulation of glimepiride which is currently available in the treatment of type 2 diabetes mellitus and to investigate the effect of polymers on the release profile of glimepiride. Glimepiride sustained release tablets were prepared by direct compression method using different ratios of various release retarding polymers such as carbopol, ethyl cellulose, methocel K4 MCR, methocel K15 MCR, methocel K100 MCR and xanthum gum. These formulations were also compared with glimepiride immediate release tablets. The prepared tablets were subjected to various physical parameter tests including weight variation, friability, hardness, thickness, diameter, etc. In vitro dissolution studies of the formulations were done at pH 6.8 in phosphate buffer using USP apparatus 2 (paddle method) at 50 rpm. The percent releases of all the formulations (30) were 73.11%- 98.76% after 8 hours. The release pattern followed zero order kinetics and the release of the drug was hindered by the polymers used in the study. On the other hand, 100% drug was released within 1 hour from the immediate release tablet of glimepiride. The study reveals that the polymers used have the capacity to retard the release of the drug from the sustained release tablets and the more is the amount of the polymer in the formulation the less is the release of drug showing more retardation of drug release.Bangladesh Pharmaceutical Journal 18(2): 157-162, 2015


Author(s):  
Dattatraya M. Shinkar ◽  
Pooja S. Aher ◽  
Parag D. Kothawade ◽  
Avish D. Maru

Objective: The main objective of this research work was to formulate and evaluate fast dissolving tablet of verapamil hydrochloride for the treatment of hypertension.Methods: In this study, fast dissolving tablet were prepared by wet granulation method by using croscarmellose sodium and sodium starch glycolate as superdisintegrants in the concentration of 2%, 4%, and 6%. Polyvinyl pyrollidone K30 is used as a binder. The designed tablets were subjected to various assessment parameters like friability test, hardness test, disintegration test, wetting time, in vitro drug release and drug content.Results: All the prepared formulations were subjected to various assessment parameters, and the findings obtain within the prescribed limit. The calibration curve of pure drug using various solvents like distilled water, phosphate buffer pH 6.8 was plotted. F1-F9 containing croscarmellose sodium and sodium starch glycolate in various concentration demonstrate the minimum disintegration time. Among all these formulations F8 shows disintegration time upto 19±0.06 seconds due to the high concentration of superdisintegrants. In vitro drug release was tested in phosphate buffer pH 6.8 at a time interval of 0, 1, 3,6,9,12,15 min. The F8 shows drug release 98.5±0.567%. Accelerated stability study of optimized formulation (F8) up to 2 mo showed there was no change in disintegration time and percentage drug release.Conclusion: The results obtained in the research work clearly showed a promising potential of fast dissolving tablets containing a specific ratio of crosscarmellose sodium and sodium starch glycolate as superdisintegrants for the effective treatment of hypertension. 


Author(s):  
Nitin A Gaikwad ◽  
Indrjeet V Mane ◽  
Manohar D Kengar ◽  
Ranjeet S Jadhav

In the Study of Formulation of Bilayer Tablet of Flurbiprofen the Following Materials Using sodium starch glycolate as immediate release and HPMC K15 in different ratios as release retardant materials using a wet granulation method. All tablets exhibited good physical properties with Respect to appearance, content uniformity, hardness, weight variation and Invitro dissolution data show at increasing proportions Of sodium starch glycolate for immediate release whereas HPMC K15sustaineddrugreleaserate. The bilayer tablets showed an initial release of drug In about1hr, then sustaining the release for 12h, The kinetic analysis of dissolution data showed that release was observe din these tablets. When data was fitted to the Higuchi model. Bilayer tablets of flurbiprofen can be successfully formulated Using sodium starch glycolate and HPMC K15 in different ratios as release retardant materials employing a wet granulation method.


Author(s):  
VISHAL YADAV ◽  
S. SATHESH KUMAR

Objective: Objective of the study was to develop tamoxifen citrate immediate release pellets by hot-melt extrusion (HME) and to study the effect of various formulation and process variables. Methods: Pellets were prepared by HME technique. Effect of various parameters such as the concentration of ethylcellulose, PEG 6000, croscarmellose sodium, and spheronization speed were studied by using Central Composite Design. Pellets were evaluated for theoretical yield (%), mean pellet size (mm), sphericity (pellips), friability (%), porosity (%), mechanical crushing force (n), and dissolution efficiency. Optimized formulation was studied for compatibility study using IR, DSC, and XRD, SEM, In vitro drug release. In vitro Cell Cytotoxicity and Viability Assay were carried out using MCF-7 (human breast cancer cells) by MTT assay. Results: Results showed that a variable such as the amount of Methyl Cellulose, PEG 6000 and Spheronization speed showed positive correlation and amount of Croscarmellose sodium showed a negative correlation with dependent variables. Optimized formulation showed Korsmeyer Peppas model as a mechanism of drug release. Value of n was found to be in between 0.77+0.04, which reveals that, release mechanism of the drug as non-Fickian transport (0.45<n<0.89). MTT results of MCF-7 cells showed that optimized immediate release pellets have maximum cytotoxicity at 80 µg/ml. Conclusion: Study concluded that HME method and materials i.e. PEG 6000 and methylcellulose can effectively use to get immediate release of tamoxifen citrate so as to increase dissolution rate and cytotoxic effect.


2013 ◽  
Vol 16 (1) ◽  
pp. 1-9
Author(s):  
Shahriar Ahmed ◽  
Mehrina Nazmi ◽  
Ikramul Hasan ◽  
Sabiha Sultana ◽  
Shimul Haldar ◽  
...  

Fexofenadine HCl immediate release tablets were designed to increase the dissolution rate by using superdisintegrants. Different formulations of Fexofenadine HCl were prepared by direct compression method. These formulations were evaluated for hardness, thickness, friability, weight variation, disintegration time, and in vitro dissolution study. The drug release from the formulations were studied according to USP specification (USP paddle method at 50 rpm for 60 minutes) maintaining the temperature to 37°C. Sodium starch glycolate, cross carmellose sodium, crospovidone (kollidon CL), ludiflash and xanthan gum were used in 3%, 6% and 8% concentrations as superdisintegrants. Thus, the ratio of superdisintegrants was changed whereas all the other excipients as well as the active drug (Fexofenadine HCl) remained same in every formulation. Here, 0.001N HCl was used as dissolution medium according to USP and absorbances were determined by using UV spectrophotometer at 217 nm. The F-3 and F-6 formulation prepared by 8% of Sodium starch glycolate and 8% of Cross carmellose sodium showed 99.99% drug release within 30 minutes and 45 minutes, respectively. The disintegration times of F-3 and F-6 formulation were within 9 seconds. The interactions between drug and excipients were characterized by FTIR spectroscopic study. DOI: http://dx.doi.org/10.3329/bpj.v16i1.14483 Bangladesh Pharmaceutical Journal 16(1): 1-9, 2013


Sign in / Sign up

Export Citation Format

Share Document