scholarly journals FORMULATION AND IN VITRO EVALUATION OF FAST DISSOLVING TABLET OF VERAPAMIL HYDROCHLORIDE

Author(s):  
Dattatraya M. Shinkar ◽  
Pooja S. Aher ◽  
Parag D. Kothawade ◽  
Avish D. Maru

Objective: The main objective of this research work was to formulate and evaluate fast dissolving tablet of verapamil hydrochloride for the treatment of hypertension.Methods: In this study, fast dissolving tablet were prepared by wet granulation method by using croscarmellose sodium and sodium starch glycolate as superdisintegrants in the concentration of 2%, 4%, and 6%. Polyvinyl pyrollidone K30 is used as a binder. The designed tablets were subjected to various assessment parameters like friability test, hardness test, disintegration test, wetting time, in vitro drug release and drug content.Results: All the prepared formulations were subjected to various assessment parameters, and the findings obtain within the prescribed limit. The calibration curve of pure drug using various solvents like distilled water, phosphate buffer pH 6.8 was plotted. F1-F9 containing croscarmellose sodium and sodium starch glycolate in various concentration demonstrate the minimum disintegration time. Among all these formulations F8 shows disintegration time upto 19±0.06 seconds due to the high concentration of superdisintegrants. In vitro drug release was tested in phosphate buffer pH 6.8 at a time interval of 0, 1, 3,6,9,12,15 min. The F8 shows drug release 98.5±0.567%. Accelerated stability study of optimized formulation (F8) up to 2 mo showed there was no change in disintegration time and percentage drug release.Conclusion: The results obtained in the research work clearly showed a promising potential of fast dissolving tablets containing a specific ratio of crosscarmellose sodium and sodium starch glycolate as superdisintegrants for the effective treatment of hypertension. 

Author(s):  
MEGHAWATI R. BADWAR ◽  
SANDHYA L. BORSE ◽  
MANISH S. JUNAGADE ◽  
ANIL G. JADHAV

Objective: The main objective of this research work was to formulate and evaluate the mouth dissolving tablet of amlodipine besylate for the treatment of hypertension and coronary artery disease. Methods: In this study, mouth dissolving tablet were prepared by direct compression method by using croscarmellose sodium and sodium starch glycolate as superdisintegrants. The designed tablets were subjected to various assessment parameters like friability test, hardness test, disintegration test, wetting time, in vitro drug release and drug content. Results: All the prepared formulations were subjected to various assessment parameters, and the findings obtain within the prescribed limit. The calibration curve of pure drug using various solvents like phosphate buffer pH 6.8, methanol was plotted. F1-F9 containing croscarmellose sodium and sodium starch glycolate in various concentration demonstrate the minimum disintegration time. Among all these formulations F9 shows disintegration time up to 22±1.12 seconds due to the high concentration of superdisintegrants. In vitro drug release was tested in phosphate buffer pH 6.8 at a time interval of 0, 1, 2, 3, 4, 5 min. The F9 shows drug release 100.22±1.08%. Accelerated stability study of optimized formulation (F9) up to 2 mo showed there was no change in disintegration time and percentage drug release. Conclusion: The results obtained in the research work clearly showed a promising potential of mouth dissolving tablets containing a specific ratio of croscarmellose sodium and sodium starch glycolate as superdisintegrants for the effective treatment of hypertension and coronary artery disease.


2015 ◽  
Vol 49 (3) ◽  
pp. 173-180
Author(s):  
T Ayyappan ◽  
C Poojitha ◽  
T Vetrichelvan

In the present work, orodissolving tablets of Efavirenz were prepared by direct compression method with a view to enhance patient compliance. A 23 full factorial design was applied to investigate the combined effect of three formulation variables. Amount of crospovidone, croscarmellose sodium and sodium starch glycolate were used as superdisintegrant material along with direct compressible mannitol to enhance mouth feel. The prepared batches of tablets were evaluated for hardness, friability, weight variation, disintegration time, wetting time, drug content and in-vitro dissolution studies. Based on wetting time, disintegration time, the formulation containing crospovidone (5% w/v), carscarmellose sodium (5% w/v) and sodium starch glycolate (8% w/v) was found to be promising and tested for in-vitro drug release pattern (in 0.1 N HCl), short term stability and drug- superdisintegrants interaction. Surface response plots are presented to graphically represent the effect of independent variables (conc. of superdisintegrants) on the in-vitro dissolution time. The validity of the generated mathematical model was tested by preparing extra-design check point formulation. The formulation showed nearly faster drug release compared to the conventional commercial tablet formulation. Stability studies on the optimized formulation indicated that there was no significant change found in physical appearance, hardness, disintegration time, drug content and in-vitro drug release. DOI: http://dx.doi.org/10.3329/bjsir.v49i3.22131 Bangladesh J. Sci. Ind. Res. 49(3), 173-180, 2014


Author(s):  
Yella Sirisha ◽  
Gopala Krishna Murthy T E ◽  
Avanapu Srinivasa Rao

 Objective: The present research work is an attempt to determine the effect of various diluents and superdisintegrants on drug release of eletriptan orodispersible tablets and designs an optimized formulation using 22 factorial design. Further, evaluate the tablets for various pre-compression and post-compression parameters.Methods: The drug excipient compatibility study was conducted by infrared spectroscopy, differential scanning colorimetry and X-ray diffraction studies were conducted to test the purity of the drug. The tablets were formulated by direct compression method using spray dried lactose, mannitol, microcrystalline cellulose, starch as diluents and crospovidone, croscarmellose sodium, and sodium starch glycolate as superdisintegrants. The powder formulations were evaluated for pre-compression parameters such as bulk density, tapped density, Carr’s Index, Hausner’s ratio, and angle of repose. The tablets were evaluated for post-compression parameters such as the hardness, thickness, friability, weight variation, and disintegrating time in the oral cavity, in vitro drug release kinetics studies, and accelerated stability studies. The formulations were optimized by 22 factorial design.Results: The drug and excipients were compatible, and no interaction was found. The drug was pure, and all the pre-compression parameters were within Indian Pharmacopoeial Limits. Post-compression parameters were also within limits. The disintegration time was found to be 27 s for the formulation F29 containing Croscarmellose sodium (5%) and Mannitol as diluent, and in vitro drug release was found to be 99.67% in 30 min and follows first-order kinetics. This was also the optimized formulation by 22 factorial design with a p=0.013.Conclusion: The orodispersible tablets of eletriptan were successfully formulated, and the optimized formulation was determined that can be used in the treatment of migraine.


2021 ◽  
Vol 11 (1) ◽  
pp. 60-64
Author(s):  
Rishabh Bindal ◽  
Arpna Indurkhya

Due to more versatility and comfort, mouth dissolving tablets are the most advanced type of oral solid dosage forms. Compared to conventional tablets, it increases the effectiveness of APIs by dissolving within a minute in the oral cavity after contact with less saliva, without chewing and without the need for water for administration. Mouth Dissolving Tablets of Ketorolac tromethamine were prepared by direct compression method using various superdisintegrants like crospovidone, Croscarmellose sodium, and Sodium starch glycolate in different concentrations. Prepared tablets were evaluated for hardness, friability, weight variation, disintegration time, wetting time and in vitro drug release. Results of pre-compression and post-compression studies of all formulations were found within the standard limits. The tablets of all the batches were found to release more than 80% of drug in 5 minutes, which is the desired quality of mouth dissolving tablets that helps in faster absorption of the drug and quick onset of therapeutic effect. The the order of dissolution of various disintegrants was found to be Crospovidone˃ SSG˃ CCS. There was no significant variation in drug content of drug during stability studies for selected batch F3 in accelerated conditions over three months. It was concluded from the study that fast release of Ketorolac tromethamine from formulation F3 may reduce onset of drug action with better patient compliance. Keywords: Crospovidone, Croscarmellose sodium, Ketorolac tromethamine, Mouth dissolving tablets, Sodium starch glycolate, superdisintegrants.


Author(s):  
Suryakanta Swain ◽  
Chinam Niranjan Patra ◽  
Kahnu Charan Panigrahi ◽  
Muddana Eswara Bhanoji Rao ◽  
Rashmita Patro

The present research work was to evaluate the effect of compression force and concentration of superdisintigrant on tableting properties of metformin HCl. Initially powder mixtures of drug, croscarmellose sodium (0.62% to 10% w/w) and microcrystalline cellulose PH-200 sufficient quantity were prepared and evaluate their pre-compression parameters of different formulation batches such as angle of repose, bulk density, tapped density, Hausner’s ratio and compressibility index. The prepared powder mixtures of different batches were compressed into tablet using hydraulic pellet press machine at two optimized compression forces (77 MPa and 154 MPa). The post compression parameters such as thickness, diameter, weight variation, hardness, friability, drug content, disintegration time and in-vitro drug release study of the prepared tablets were evaluated. FT-IR and DSC studies showed that no incompatibility of the selected drug with the selected excipients. At selected compression force (77 MPa) and increased concentration of superdisintigration (0.62% to 10% w/w) of formulations F1 to F5 indicated that, disintegration time were periodically decreased up to F3 (1.25% w/w croscarmellose sodium). When the concen-tration of superdisintigrant increased up to 10% showed that disintegration time were periodically increased. Similarly, at compression force 154 MPa there is increased in tablet hardness but this effect was less significant when the superdisintegrant concentration more than 1.25% w/w. The hardness and drug content of all the formulations were found to be 3.59 ± 0.23 to 4.85 ± 0.01 kg/cm2 and 97.89 ± 0.10% to 99.42 ± 0.03% respectively. The in-vitro drug release data suggested that drug release of all the formulations followed Higuchi’s kinetic (R> = 0.998). The release rate exponent values (n) suggested the mechanism of drug release followed Quasi-Fickian diffusion mechanism at compression force 77 MPa and anomalous diffusion mechanism at compression force 154 MPa, respectively.


2015 ◽  
Vol 05 (01) ◽  
pp. 040-044
Author(s):  
D S Sandeep ◽  
R Narayana Charyulu ◽  
Prashant Nayak

AbstractIn the present investigation comparison of three different superdisintegrants was carried out by formulating orally disintegrating tablets. Promethazine HCl was used as model drug which is an antiemetic drug. Sodium starch glycolate, croscarmellose and crospovidone were selected as superdisintegrants and each one was used in three different concentrations (2%, 3.5% and 5%). The drug-polymer compatibility was ruled out by FTIR studies. A total of nine formulations (PF1-PF9) were made by direct compression. All prepared formulations were evaluated for weight variation, hardness, friability, drug content, disintegration time, wetting time and in vitro drug release parameters. The results of the evaluation parameters for all the nine formulations of promethazine HCl were within the standard limits. The in vitro drug release for promethazine HCl tablets of all the formulations (PF1-PF9) was carried out using phosphate buffer pH 6.8 as dissolution medium. Among all the formulations the tablets formulated with crospovidone (PF7-PF9) have shown 91.43 - 98.43% (maximum) drug release at the end of 10 min than sodium starch glycolate and croscarmellose, hence from the present work, it concluded that among three superdisintegrants crospovidone is the ideal superdisintegrant for formulating oral disintegrating tablets for promethazine HCl.


Author(s):  
Reecha Madaan ◽  
Rajni Bala ◽  
Tejeswini Vasisht ◽  
Ritima Sharma ◽  
Shivali Garg

Objective: The present research work was to formulate matrix tablets of diclofenac sodium using mucilage extracted from Tinospora cordifolia as a novel binding agent. Also, a comparative study on binding properties of mucilage and carbopol were performed.Methods: Fresh stems of Tinospora cordifolia were collected and mucilage was extracted out using standard method. The isolated mucilage was characterised for physicochemical parameters. Formulation of diclofenac sodium tablets (f1-f6) was done by dry granulation method using 2%, 4%, 6%, 8% and 10% concentration of mucilage of Tinospora cardifolia as natural binder. Carbopol 2% was used as synthetic matrix forming agent. Microcrystalline cellulose was used as diluents, magnesium stearate and talc as lubricant. The formulated tablets were evaluated for parameters such as tablet thickness, hardness, weight variation, disintegration time, percent friability and in vitro drug release characteristics. The drug release mechanism was determined by fitting the release data into different kinetics models.Results: The results revealed that all the pre and post compression parameters of the formulated tablets (f1-f6) were in compliance with pharmacopoeial limits. In vitro drug release studies showed that formulation f6 containing maximum concentration of mucilage release the drug in a most controlled and sustained manner with maximum drug release of 63.6% in 15 h in comparison with f1(2% carbopol) giving 80% release and was found to be stable for 3 mo as indicated by stability studies. The mechanism of drug releases from formulation f1-f6 was found to be polymer disentanglement and erosion. Preformulation studies using FTIR study reveals that there is no incompatibility between the pure drug and mucilage of tinospora cardifolia used.Conclusion: Based on the experimental findings it can be concluded that Tinospora cordifolia mucilage can be used as a release retardant agent in the formulation of sustained release dosage forms.


Author(s):  
Madhivardhana P ◽  
Rajalakshmi A N ◽  
Padmapriya S

The aim of this research work is to formulate and evaluate Levothroxine sodium immediate release tablets prepared by direct compression method . Five formulations were evaluated for different pre and post compression parameter and in vitro drug release studies.The results of pre compression parameters of formluation 1 to 5 were compared with prescribed limits. It showed that formulation 1 to 5 powder blend exhibit good flow property and compressibility property. The disintegration time of all formulation was found to be in the range 2mins 09 secsto 4mins 03 secs.Thus, based on evaluation of different parameters it was concluded that formulation of immediate release tablet Levothyroxine sodium was successfully done and F-5 showed almost 93% drug release at 45 mins in Alkaline borate buffer( pH 10). Keywords: Thyroid hormone (T4), Immediate release tablets, Direct compression, Dissolution.


Author(s):  
Y. Srinivasa Rao ◽  
K. Adinarayana Reddy

Fast dissolving oral delivery systems are solid dosage forms, which disintegrate or dissolve within 1 minute in the mouth without drinking water or chewing. Mouth dissolving film (MDF) is a better alternate to oral disintegrating tablets due to its novelty, ease of use and the consequent patient compliance. The purpose of this work was to develop mouth dissolving oral films of palonosetron HCl, an antiemetic drug especially used in the prevention and treatment of chemotherapy-induced nausea and vomiting. In the present work, the films were prepared by using solvent casting method with various polymers HPMC E3, E5 & E15 as a film base synthetic polymer, propylene glycol as a plasticizer and maltodextrin and other polymers. Films were found to be satisfactory when evaluated for thickness, in vitro drug release, folding endurance, drug content and disintegration time. The surface pH of all the films was found to be neutral. The in vitro drug release of optimized formulation F29 was found to be 99.55 ± 6.3 7% in 7 min. The optimized formulation F29 also showed satisfactory surface pH, drug content (99.38 ± 0.08 %), disintegration time of 8 seconds and good stability. FTIR data revealed that no interaction takes place between the drug and polymers used in the optimized formulation. In vitro and in vivo evaluation of the films confirmed their potential as an innovative dosage form to improve delivery and quick onset of action of Palonosetron Hydrochloride. Therefore, the mouth dissolving film of palonosetron is potentially useful for the treatment of emesis disease where quick onset of action is desired, also improved patient compliance.


Author(s):  
Sudarshan Singh ◽  
S S Shyale ◽  
P Karade

The aim of this study was to design orally disintegrating tablet (ODT) of Lamotrigine. It is an Antiepileptic drug which is widely used in epilepsy. It is also used in simple and complex partial seizures and secondary generalized tonic-clonic seizures. It is poorly water soluble drug (0.46 mg/ml). Thus, an attempt was made to enhance the water solubility by complexation with β-cyclodextrin (1:1 molar ratios). The orally disintegrating tablet of lamotrigine was prepared by direct compression method using different concentration of superdisintegrants such as Sodium starch glycollate, croscarmellose sodium by sublimating agent such as camphor. The formulations were evaluated for weight variation, hardness, friability, drug content, wetting time, in vitro disintegration time and in vitro dissolution studies. The prepared tablets were characterized by Fourier transform infrared spectroscopy and differential scanning calorimetry. The disintegration time for the complexed tablets prepared by different concentration of superdisintegrants was found to be in range of 32.54 ± 0.50 to 55.12 ± 0.57 sec and wetting time of the formulations was found to be in range of 28.47 ± 0.67 to 52.19 ± 0.72 sec. All the formulation showed almost 100 percent of drug release within 15 min. Among all the formulation F6 and F7 prepared with 18% croscarmellose sodium and camphor shows faster drug release, respectively 10 min, F6 gives good result for disintegration time, drug release, wetting time and friability. Further formulations were subjected to stability testing for 30 days at temperature of 40 ± 5 ºC/75 ± 5 %RH. Tablets showed no appreciable changes with respect to physical appearance, drug content, disintegration time and dissolution profiles. Results were statistically analyzed by one-way ANOVA at a p < 0.05. It was found that, the data at any point of time are significant at p < 0.05.


Sign in / Sign up

Export Citation Format

Share Document