scholarly journals Anodisation Increases Integration of Unloaded Titanium Implants in Sheep Mandible

2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
Warwick J. Duncan ◽  
Min-Ho Lee ◽  
Tae-Sung Bae ◽  
Sook-Jeong Lee ◽  
Jennifer Gay ◽  
...  

Spark discharge anodic oxidation forms porous TiO2films on titanium implant surfaces. This increases surface roughness and concentration of calcium and phosphate ions and may enhance early osseointegration. To test this, forty 3.75 mm × 13 mm titanium implants (Megagen, Korea) were placed into healed mandibular postextraction ridges of 10 sheep. There were 10 implants per group: RBM surface (control), RBM + anodised, RBM + anodised + fluoride, and titanium alloy + anodised surface. Resonant frequency analysis (RFA) was measured in implant stability quotient (ISQ) at surgery and at sacrifice after 1-month unloaded healing. Mean bone-implant contact (% BIC) was measured in undemineralised ground sections for the best three consecutive threads. One of 40 implants showed evidence of failure. RFA differed between groups at surgery but not after 1 month. RFA values increased nonsignificantly for all implants after 1 month, except for controls. There was a marked difference in BIC after 1-month healing, with higher values for alloy implants, followed by anodised + fluoride and anodised implants. Anodisation increased early osseointegration of rough-surfaced implants by 50–80%. RFA testing lacked sufficient resolution to detect this improvement. Whether this gain in early bone-implant contact is clinically significant is the subject of future experiments.

2012 ◽  
Vol 38 (1) ◽  
pp. 3-10 ◽  
Author(s):  
Mansour Rismanchian ◽  
Bijan Movahedian Attar ◽  
Sayed Mohammad Razavi ◽  
Ali Nasir Shamsabad ◽  
Majid Rezaei

The endeavors to shorten implant treatment time have led to the concept of immediate loading. This research was designed to compare the immediate loading and the 2-staged methods on implant placement from a clinical, histological, and histomorphometric standpoint. Three months postextraction of 12 premolars of 3 dogs, 12 implants were inserted. Bone-implant contact (BIC), implant stability quotient (ISQ), the bone type in a 2-mm periphery around the implant, and the marginal bone loss (MBL) were recorded for unloaded implants (n  =  6) and immediately loaded ones (n  =  6). BIC, ISQ, MBL in the mesial, and the bone types around the implants were not significantly different in the 2 groups. The distal MBL was higher in the immediately loaded group. Immediate loading does not appear to be perilous for osseointegration, BIC, or new bone type around implants.


2021 ◽  
Author(s):  
Rafael Coutinho Mello-Machado ◽  
Suelen Cristina Sartoretto ◽  
Jose Mauro Granjeiro ◽  
José Albuquerque Calasans-Maia ◽  
Marcelo Jose Guedes Pinheiro Uzeda ◽  
...  

Abstract This study aimed to investigate in vivo the hypothesis that the osseodensification technique, through a wider osteotomy, produce healing chambers at the implant-bone interface with no impact on primary stability osseointegration in low-density bone. Twenty implants (3.5 x 10 mm) presenting nanohydroxyapatite (nHA) surface were inserted in the ilium of ten sheep, after preparation of a 2.7-mm wide implant bed with conventional subtractive drilling (SCD) or a 3.8-mm wide implant bed with an osseodensification bur system (OBS) (n = 5/group/period). The final insertion torque (IT) and implant stability quotient (ISQ) evaluated the primary implant stability. After 14 and 28 days, the bone samples containing the implants were processed for histological and histomorphometric evaluation of bone implant contact (BIC) and bone area fraction occupancy (BAFO). No significant differences occurred between the implant bed preparations regarding IT and ISQ (P > 0.05). Histological analysis showed bone remodeling, and bone growth in all samples with no inflammatory infiltrate. BIC values were higher for SCD after 14 and 28 days (p < 0.05), however BAFO values were similar on both groups (p > 0.05). It was possible to conclude that the osseodensification technique allowed a wider implant bed preparation with no prejudice on primary stability and bone remodeling.


2008 ◽  
Vol 21 (03) ◽  
pp. 202-210 ◽  
Author(s):  
J. Langhoff ◽  
J. Mayer ◽  
L. Faber ◽  
S. Kaestner ◽  
G. Guibert ◽  
...  

Summary Objectives: Titanium implants have a tendency for high bone-implant bonding, and, in comparison to stainless steel implants are more difficult to remove. The current study was carried out to evaluate, i) the release strength of three selected anodized titanium surfaces with increased nanohardness and low roughness, and ii) bone-implant bonding in vivo. These modified surfaces were intended to give improved anchorage while facilitating easier removal of temporary implants. Material and methods: The new surfaces were referenced to a stainless steel implant and a standard titanium implant surface (TiMAX™). In a sheep limb model, healing period was 3 months. Bone-implant bonding was evaluated either biomechanically or histologically. Results: The new surface anodized screws demonstrated similar or slightly higher bone-implantcontact (BIC) and torque release forces than the titanium reference. The BIC of the stainless steel implants was significant lower than two of the anodized surfaces (p=0.04), but differences between stainless steel and all titanium implants in torque release forces were not significant (p=0.06). Conclusion: The new anodized titanium surfaces showed good bone-implant bonding despite a smooth surface and increased nanohardness. However, they failed to facilitate implant removal at 3 months.


2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
Bo Huang ◽  
Qianqian Yao ◽  
Yan Huang ◽  
Liang Zhang ◽  
Yang Yao ◽  
...  

Background. Clinical data demonstrated that failure rate of titanium implant in irradiated bone was 2-3 times higher than that in nonirradiated bone and it is difficult to get the ideal results in irradiated bone. Purpose. The aim of the study was to investigate the effects of HBO, BMP2, VEGF165, and combined use of BMP2/VEGF165 on osseointegration and stability of titanium implant in irradiated bone. Materials and Methods. Sixty rabbits were randomly assigned to 5 groups (control group, HBO group, VEGF165 group, BMP2 group, and BMP2/VEGF165 group) after receiving 15 Gy radiation. Implant surgery was performed on tibias eight weeks later. They were sacrificed at two or eight weeks after operation. Implant stability, calcium, and ALP activity in serum, the ratio of bone volume to total volume, the rate of bone growth, and gene expression were assessed. Result. There was no mortality and no implants failed during the experiment. Implant stability was significantly compromised in the control group compared to the other four experimental groups, and the BMP2/VEGF165 group had the highest implant stability. HBO, BMP2, and VEGF165 significantly increased BV/TV and the rate of bone growth, while the BMP2/VEGF165 showed the best effect among groups. The expression of RUNX2 in HBO, BMP2, and VEGF165/BMP2 group was higher than that in the VEGF165 and control groups at two weeks. The expression of OCN in HBO, BMP2, VEGF165, and VEGF165/BMP2 groups was higher than that in the control group, and the gene expression of CD31 was higher in HBO, VEGF165, and BMP2/VEGF165 groups than that in control and BMP2 groups. Conclusion. HBO, BMP2, and VEGF165 could increase bone formation around the implant and improved the implant stability in irradiated bone. The combination use of BMP2 and VEGF165 may be promising in the treatment of implant patients with radiotherapy.


2010 ◽  
Vol 36 (2) ◽  
pp. 97-103 ◽  
Author(s):  
David G. Quintero ◽  
Julia N. Winger ◽  
Rania Khashaba ◽  
James L. Borke

Abstract Advanced glycation endproducts (AGEs) are a diverse group of molecular adducts formed in environments high in reducing sugars that accumulate with aging and in diabetes. This study tests the hypothesis that AGEs inhibit the stabile osseointegration of dental implants through tissue interactions that interfere with bone turnover and compromise the biomechanical properties at the bone-implant interface. Maxillary first molars were extracted from 32 rats and allowed to heal for 4 weeks. Titanium implants (1 mm × 3 mm) were placed in the healed sockets of 2 groups of 16 rats consisting of 8 rats injected 3 times/wk for 1 month with AGE (prepared from glucose and lysine) and 8 rats injected with vehicle as a control. AGE injections continued for an additional 14 or 28 days before sacrifice. X-ray images, blood, and tissues were collected to examine bone/implant contact ratio, serum pyridinoline ([PYD] a collagen breakdown marker), osteocalcin ([OSC] a bone formation marker), and for immunohistochemistry with antibodies to AGE and the bone turnover-marker protein matrix metalloproteinase1. Compared with the AGE-treated groups, the controls showed significantly higher bone/implant contact at both 14- and 28-day time points. PYD (P &lt; .05) and OSC (trend) levels from controls showed decreases at 28 days when compared with AGE-treated groups. Immunohistochemistry with AGE-specific and bone turnover marker antibodies showed stronger staining associated with the implant/tissue interface in AGE-treated rats. Our studies indicate an association between AGE and inhibition of bone turnover, suggesting that the formation of AGE in high glycemic conditions, such as diabetes, may contribute to a slower rate of osseointegration that negatively affects implant stability.


2017 ◽  
Vol 43 (3) ◽  
pp. 186-193 ◽  
Author(s):  
Rosa-María Díaz-Sánchez ◽  
José-María Delgado-Muñoz ◽  
Pilar Hita-Iglesias ◽  
Kyle T. Pullen ◽  
María-Ángeles Serrera-Figallo ◽  
...  

To ensure similar primary implant stability measured by resonance frequency analysis (RFA) could be obtained in different jawbone densities by using a specific surgical drilling protocol and, to correlate those RFA measurements with factors related to the implant design, width, and length, we are performed a 1-year prospective clinical study was carried out using 27 subjects. A total of 67 hydrophilic titanium implants were placed using a standard 2-stage implant placement protocol. The bone type at each implant site was determined by evaluation of a preoperative, high-resolution cone beam computerized tomography (CBCT) scan. A modified drilling protocol was used in softer bone (types 2, 3, and 4) that allowed for greater implant thread contact with the surrounding bone. The implant stability quotient (ISQ) was measured at 4 different times during the study: initially it was determined immediately after implant placement, then again at stage 2 uncovering surgery, then at 6 months' postplacement and, and finally at 1 year postplacement. Data collected immediately after implant surgery demonstrated a high correlation (R2 = .99) between the ISQ and bone type classification. An overall trend toward a higher ISQ was found over the 1-year study period for all types of bone. Implants remained clinically and radiographically stable during the 1-year study period. Our data allow conclude that the primary stability of 2-staged loaded implants placed in different bone types can be optimized by applying this surgical drilling protocol during the implant placement. The ISQ method was found to be a reliable predictor of implant stability.


2015 ◽  
Vol 42 (3) ◽  
pp. 302-310 ◽  
Author(s):  
Henning Schliephake ◽  
Jennifer Rublack ◽  
Anne Förster ◽  
Bernd Schwenzer ◽  
Judith Reichert ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document