scholarly journals Potential Inhibitors for Isocitrate Lyase ofMycobacterium tuberculosisand Non-M. tuberculosis: A Summary

2015 ◽  
Vol 2015 ◽  
pp. 1-20 ◽  
Author(s):  
Yie-Vern Lee ◽  
Habibah A. Wahab ◽  
Yee Siew Choong

Isocitrate lyase (ICL) is the first enzyme involved in glyoxylate cycle. Many plants and microorganisms are relying on glyoxylate cycle enzymes to survive upon downregulation of tricarboxylic acid cycle (TCA cycle), especiallyMycobacterium tuberculosis(MTB). In fact, ICL is a potential drug target for MTB in dormancy. With the urge for new antitubercular drug to overcome tuberculosis treat such as multidrug resistant strain and HIV-coinfection, the pace of drug discovery has to be increased. There are many approaches to discovering potential inhibitor for MTB ICL and we hereby review the updated list of them. The potential inhibitors can be either a natural compound or synthetic compound. Moreover, these compounds are not necessary to be discovered only from MTB ICL, as it can also be discovered by a non-MTB ICL. Our review is categorized into four sections, namely, (a) MTB ICL with natural compounds; (b) MTB ICL with synthetic compounds; (c) non-MTB ICL with natural compounds; and (d) non-MTB ICL with synthetic compounds. Each of the approaches is capable of overcoming different challenges of inhibitor discovery. We hope that this paper will benefit the discovery of better inhibitor for ICL.

1969 ◽  
Vol 15 (10) ◽  
pp. 1207-1212 ◽  
Author(s):  
J. C. Galbraith ◽  
J. E. Smith

The activities of certain enzymes of the tricarboxylic acid (TCA) cycle and the glyoxylate cycle (GLC) varied during growth of Aspergillus niger as a function of the stage of the life cycle and of the growth medium. Isocitrate dehydrogenase (carboxylating) and isocitrate lyase each showed a marked increase in activity prior to sporulation. There were no similar increases in vegetative cultures. It is proposed that isocitrate lyase is functional in glycine synthesis and that a source of glyoxylate may be indispensable to the expression of sporulation.


2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Claudia Durall ◽  
Kateryna Kukil ◽  
Jeffrey A. Hawkes ◽  
Alessia Albergati ◽  
Peter Lindblad ◽  
...  

Abstract Background Cyanobacteria are promising hosts for the production of various industrially important compounds such as succinate. This study focuses on introduction of the glyoxylate shunt, which is naturally present in only a few cyanobacteria, into Synechocystis PCC 6803. In order to test its impact on cell metabolism, engineered strains were evaluated for succinate accumulation under conditions of light, darkness and anoxic darkness. Each condition was complemented by treatments with 2-thenoyltrifluoroacetone, an inhibitor of succinate dehydrogenase enzyme, and acetate, both in nitrogen replete and deplete medium. Results We were able to introduce genes encoding the glyoxylate shunt, aceA and aceB, encoding isocitrate lyase and malate synthase respectively, into a strain of Synechocystis PCC 6803 engineered to overexpress phosphoenolpyruvate carboxylase. Our results show that complete expression of the glyoxylate shunt results in higher extracellular succinate accumulation compared to the wild type control strain after incubation of cells in darkness and anoxic darkness in the presence of nitrate. Addition of the inhibitor 2-thenoyltrifluoroacetone increased succinate titers in all the conditions tested when nitrate was available. Addition of acetate in the presence of the inhibitor further increased the succinate accumulation, resulting in high levels when phosphoenolpyruvate carboxylase was overexpressed, compared to control strain. However, the highest succinate titer was obtained after dark incubation of an engineered strain with a partial glyoxylate shunt overexpressing isocitrate lyase in addition to phosphoenolpyruvate carboxylase, with only 2-thenoyltrifluoroacetone supplementation to the medium. Conclusions Heterologous expression of the glyoxylate shunt with its central link to the tricarboxylic acid cycle (TCA) for acetate assimilation provides insight on the coordination of the carbon metabolism in the cell. Phosphoenolpyruvate carboxylase plays an important role in directing carbon flux towards the TCA cycle.


2007 ◽  
Vol 73 (21) ◽  
pp. 6829-6841 ◽  
Author(s):  
John T. Wertz ◽  
John A. Breznak

ABSTRACT Stenoxybacter acetivorans is a newly described, obligately microaerophilic β-proteobacterium that is abundant in the acetate-rich hindgut of Reticulitermes. Here we tested the hypotheses that cells are located in the hypoxic, peripheral region of Reticulitermes flavipes hindguts and use acetate to fuel their O2-consuming respiratory activity in situ. Physical fractionation of R. flavipes guts, followed by limited-cycle PCR with S. acetivorans-specific 16S rRNA gene primers, indicated that cells of this organism were indeed located primarily among the microbiota colonizing the hindgut wall. Likewise, reverse transcriptase PCR of hindgut RNA revealed S. acetivorans-specific transcripts for acetate-activating enzymes that were also found in cell extracts (acetate kinase and phosphotransacetylase), as well as transcripts of ccoN, which encodes the O2-reducing subunit of high-affinity cbb 3-type cytochrome oxidases. However, S. acetivorans strains did not possess typical enzymes of the glyoxylate cycle (isocitrate lyase and malate synthase A), suggesting that they may use an alternate pathway to replenish tricarboxylic acid cycle intermediates or they obtain such compounds (or their precursors) in situ. Respirometric measurements indicated that much of the O2 consumption by R. flavipes worker larvae was attributable to their guts, and the potential contribution of S. acetivorans to O2 consumption by extracted guts was about 0.2%, a value similar to that obtained for other hindgut bacteria examined. Similar measurements obtained with guts of larvae prefed diets to disrupt major members of the hindgut microbiota implied that most of the O2 consumption observed with extracted guts was attributable to protozoans, a group of microbes long thought to be “strict anaerobes.”


1989 ◽  
Vol 67 (2) ◽  
pp. 447-450 ◽  
Author(s):  
B. Dehorter ◽  
L. Lacoste

The activity of two enzymes of the tricarboxylic acid cycle (NADP+-isocitrate dehydrogenase, EC 1.1.1.42) and the glyoxylate cycle (isocitrate lyase, EC 4.1.3.1) were assayed in vitro to determine the effects of darkness, light, and mycosporin (P310) on sexual morphogenesis in Nectria galligena Bres. In the absence of mycosporin, high isocitrate lyase activity was associated with vegetative growth of fungi kept in the dark. In contrast, light-induced perithecial development and mycosporin biosynthesis could be correlated with high ratios of isocitrate dehydrogenase to isocitrate lyase activity. This was confirmed by the fact that when mycosporin was added to the nutrient medium with incubation in darkness, the fertility of the fungus was partially expressed and the activity of isocitrate lyase was significantly reduced. Thus this enzyme would be repressed in vivo by mycosporin. Because of its photomimetic role in sexual differentiation and regulation of intermediate metabolism, mycosporin appears to be a biochemical transmitter of light energy required for the formation of ascocarps.


2015 ◽  
Vol 59 (10) ◽  
pp. 6101-6112 ◽  
Author(s):  
Peng Li ◽  
Chaminda J. Seneviratne ◽  
Emanuele Alpi ◽  
Juan A. Vizcaino ◽  
Lijian Jin

ABSTRACTCandidainfection has emerged as a critical health care burden worldwide, owing to the formation of robust biofilms against common antifungals. Recent evidence shows that multidrug-tolerant persisters critically account for biofilm recalcitrance, but their underlying biological mechanisms are poorly understood. Here, we first investigated the phenotypic characteristics ofCandidabiofilm persisters under consecutive harsh treatments of amphotericin B. The prolonged treatments effectively killed the majority of the cells of biofilms derived from representative strains ofCandida albicans,Candida glabrata, andCandida tropicalisbut failed to eradicate a small fraction of persisters. Next, we explored the tolerance mechanisms of the persisters through an investigation of the proteomic profiles ofC. albicansbiofilm persister fractions by liquid chromatography-tandem mass spectrometry. TheC. albicansbiofilm persisters displayed a specific proteomic signature, with an array of 205 differentially expressed proteins. The crucial enzymes involved in glycolysis, the tricarboxylic acid cycle, and protein synthesis were markedly downregulated, indicating that major metabolic activities are subdued in the persisters. It is noteworthy that certain metabolic pathways, such as the glyoxylate cycle, were able to be activated with significantly increased levels of isocitrate lyase and malate synthase. Moreover, a number of important proteins responsible forCandidagrowth, virulence, and the stress response were greatly upregulated. Interestingly, the persisters were tolerant to oxidative stress, despite highly induced intracellular superoxide. The current findings suggest that delicate metabolic control and a coordinated stress response may play a crucial role in mediating the survival and antifungal tolerance ofCandidabiofilm persisters.


1999 ◽  
Vol 19 (10) ◽  
pp. 6720-6728 ◽  
Author(s):  
Zhengchang Liu ◽  
Ronald A. Butow

ABSTRACT The Hap2,3,4,5p transcription complex is required for expression of many mitochondrial proteins that function in electron transport and the tricarboxylic acid (TCA) cycle. We show that as the cells’ respiratory function is reduced or eliminated, the expression of four TCA cycle genes, CIT1, ACO1, IDH1, andIDH2, switches from HAP control to control by three genes, RTG1, RTG2, and RTG3. The expression of four additional TCA cycle genes downstream ofIDH1 and IDH2 is independent of theRTG genes. We have previously shown that theRTG genes control the retrograde pathway, defined as a change in the expression of a subset of nuclear genes, e.g., the glyoxylate cycle CIT2 gene, in response to changes in the functional state of mitochondria. We show that thecis-acting sequence controlling RTG-dependent expression of CIT1 includes an R box element, GTCAC, located 70 bp upstream of the Hap2,3,4,5p binding site in theCIT1 upstream activation sequence. The R box is a binding site for Rtg1p-Rtg3p, a heterodimeric, basic helix-loop-helix/leucine zipper transcription factor complex. We propose that in cells with compromised mitochondrial function, the RTG genes take control of the expression of genes leading to the synthesis of α-ketoglutarate to ensure that sufficient glutamate is available for biosynthetic processes and that increased flux of the glyoxylate cycle, via elevated CIT2 expression, provides a supply of metabolites entering the TCA cycle sufficient to support anabolic pathways. Glutamate is a potent repressor of RTG-dependent expression of genes encoding both mitochondrial and nonmitochondrial proteins, suggesting that it is a specific feedback regulator of the RTG system.


1983 ◽  
Vol 29 (6) ◽  
pp. 718-723 ◽  
Author(s):  
Nachman Paster ◽  
Ilan Chet

The role of some enzymes in sclerotia production by Aspergillus ochraceus was studied using a sclerotia-producing strain grown under conditions in which sclerotia production was either favoured or inhibited. In addition, a mutant strain incapable of producing sclerotia was used. No significant differences in patterns of soluble proteins, polyphenol oxidase, and esterases could be detected electrophoretically by gel electrophoresis, while the peroxidase pattern of both the sclerotia-producing strain and the mutant showed three bands as compared with two bands that appeared when sclerotia formation was inhibited. The activities of the tricarboxylic acid cycle enzymes, malate dehydrogenase and succinate dehydrogenase, and those of the pentose-phosphate pathway, glucose-6 phosphate dehydrogenase and 6-phosphogluconate dehydrogenase, were almost identical in sclerotia- and nonsclerotia-producing mycelia. The activities of isocitrate lyase and malate synthetase, key enzymes of the glyoxylate cycle, and that of glyoxylate dehydrogenase which is related to this cycle were significantly reduced when sclerotia formation was inhibited either by methionine or by high levels of CO2. It is suggested that the glyoxylate cycle plays an important role in sclerotia formation in the fungus.


1973 ◽  
Vol 134 (2) ◽  
pp. 607-616 ◽  
Author(s):  
Nicole Bégin-Heick

Results are presented on the intracellular localization of some of the enzymes of gluconeogenesis, of the tricarboxylic acid cycle and of related enzymes in Astasia and Euglena grown with various substrates. The results indicate the particulate nature of at least part of the malate synthase of Astasia and of part of the malate synthase and isocitrate lyase in Euglena. However, the presence of glyoxysomes (microbodies) in Astasia and Euglena is still open to question, since it has not, so far, been possible to separate the enzymes of the glyoxylate cycle from succinate dehydrogenase in the particulate fraction.


2005 ◽  
Vol 37 (6) ◽  
pp. 406-414 ◽  
Author(s):  
Ying Lu ◽  
Yong-Rui Wu ◽  
Bin Han

Abstract The glyoxylate cycle is a modified form of the tricarboxylic acid cycle that converts C2 compounds into C4 dicarboxylic acids at plant developmental stages. By studying submerged rice seedlings, we revealed the activation of the glyoxylate cycle by identifying the increased transcripts of mRNAs of the genes of isocitrate lyase (ICL) and malate synthase (MS), two characteristic enzymes of the glyoxylate cycle. Northern blot analysis showed that ICL and MS were activated in the prolonged anaerobic environment. The activity assay of pyruvate decarboxylase and ICL in the submerged seedlings indicated an 8.8-fold and 3.5-fold increase over that in the unsubmerged seedlings, respectively. The activity assay of acetyl-coenzyme A synthetase in the submerged seedlings indicated a 3-fold increase over that in the unsubmerged seedlings, which is important for initiating acetate metabolism. Consequently, we concluded that the glyoxylate cycle was involved in acetate metabolism under anaerobic conditions.


Microbiology ◽  
2009 ◽  
Vol 155 (10) ◽  
pp. 3166-3175 ◽  
Author(s):  
M. F. Dunn ◽  
J. A. Ramírez-Trujillo ◽  
I. Hernández-Lucas

The glyoxylate cycle is an anaplerotic pathway of the tricarboxylic acid (TCA) cycle that allows growth on C2 compounds by bypassing the CO2-generating steps of the TCA cycle. The unique enzymes of this route are isocitrate lyase (ICL) and malate synthase (MS). ICL cleaves isocitrate to glyoxylate and succinate, and MS converts glyoxylate and acetyl-CoA to malate. The end products of the bypass can be used for gluconeogenesis and other biosynthetic processes. The glyoxylate cycle occurs in Eukarya, Bacteria and Archaea. Recent studies of ICL- and MS-deficient strains as well as proteomic and transcriptional analyses show that these enzymes are often important in human, animal and plant pathogenesis. These studies have extended our understanding of the metabolic pathways essential for the survival of pathogens inside the host and provide a more complete picture of the physiology of pathogenic micro-organisms. Hopefully, the recent knowledge generated about the role of the glyoxylate cycle in virulence can be used for the development of new vaccines, or specific inhibitors to combat bacterial and fungal diseases.


Sign in / Sign up

Export Citation Format

Share Document