scholarly journals On Molecular Topological Properties of TiO2 Nanotubes

2016 ◽  
Vol 2016 ◽  
pp. 1-5 ◽  
Author(s):  
Nilanjan De

Titania nanotube is a well-known semiconductor and has numerous technological applications. In chemical graph theory, topological indices provide an important tool to quantify the molecular structure and it is found that there is a strong correlation between the properties of chemical compounds and their molecular structure. Among different topological indices, degree-based topological indices are most studied and have some important applications. In this study, several old and new degree-based topological indices have been investigated for titania TiO2 nanotubes.

2020 ◽  
Vol 8 (1) ◽  
pp. 65
Author(s):  
Murat Cancan ◽  
Kerem Yamaç ◽  
Ziyattin Taş ◽  
Mehmet Şerif Aldemir

Carborundum, also known as silicon carbide which containing carbon and silicon, is a semiconductor. Molecular topological properties of physical substances are important tools to investigate the underlying topology of these substances. Ev-degree and ve-degree based on the molecular topological indices have been defined as parallel to their corresponding classical degree based topological indices in chemical graph theory. Classical degree based topological properties of carborundum have been investigated recently. As a continuation of these studies, in this study, we compute novel ve-degree harmonic, ve-degree sum-connectivity, ve-degree geometric-arithmetic, and ve-degree atom-bond connectivity, the first and the fifth harmonic molecular topological indices of two carborundum structures. 


2020 ◽  
Vol 18 (1) ◽  
pp. 1362-1369
Author(s):  
Farkhanda Afzal ◽  
Sabir Hussain ◽  
Deeba Afzal ◽  
Saira Hameed

AbstractChemical graph theory is a subfield of graph theory that studies the topological indices for chemical graphs that have a good correlation with chemical properties of a chemical molecule. In this study, we have computed M-polynomial of zigzag edge coronoid fused by starphene. We also investigate various topological indices related to this graph by using their M-polynomial.


2020 ◽  
Vol 18 (1) ◽  
pp. 339-346 ◽  
Author(s):  
Hong Yang ◽  
Muhammad Kamran Siddiqui ◽  
Muhammad Naeem ◽  
Najma Abdul Rehman

AbstractGraph theory assumes an imperative part in displaying and planning any synthetic structure or substance organizer. Chemical graph theory facilitates in conception of the chemical graphs for their atomic properties. The graphical structure of a chemical involves atoms termed as vertices and the line segment between two different vertices are called edges. In this manuscript, our concentration is on the chemical graph of carbon graphite and cubic carbon. Additionally, we also define a procedure and calculate the degree based topological indices namely Zagreb type indices, Balaban, Forgotten and Augmented indices.


2015 ◽  
Vol 93 (7) ◽  
pp. 730-739 ◽  
Author(s):  
Abdul Qudair Baig ◽  
Muhammad Imran ◽  
Haidar Ali

Topological indices are numerical parameters of a graph that characterize its topology and are usually graph invariant. In a QSAR/QSPR study, physicochemical properties and topological indices such as Randić, atom–bond connectivity (ABC), and geometric–arithmetic (GA) indices are used to predict the bioactivity of chemical compounds. Graph theory has found a considerable use in this area of research. In this paper, we study different interconnection networks and derive analytical closed results of the general Randić index (Rα(G)) for α = 1, [Formula: see text], –1, [Formula: see text] only, for dominating oxide network (DOX), dominating silicate network (DSL), and regular triangulene oxide network (RTOX). All of the studied interconnection networks in this paper are motivated by the molecular structure of a chemical compound, SiO4. We also compute the general first Zagreb, ABC, GA, ABC4, and GA5 indices and give closed formulae of these indices for these interconnection networks.


2021 ◽  
Vol 33 (4) ◽  
pp. 30-41
Author(s):  
V.R. KULLI ◽  
◽  
B. CHALUVARAJU ◽  
T.V. ASHA ◽  
◽  
...  

Chemical graph theory is a branch of graph theory whose focus of interest is to finding topological indices of chemical graphs which correlate well with chemical properties of the chemical molecules. In this paper, we compute the Nirmala index, first and second inverse Nirmala indices for some chemical networks like silicate networks, chain silicate networks, hexagonal networks, oxide networks and honeycomb networks along with their comparative analysis.


2018 ◽  
Vol 26 (1) ◽  
pp. 91-104 ◽  
Author(s):  
Prosanta Sarkar ◽  
Nilanjan De ◽  
Anita Pal

Abstract In chemical graph theory, chemical structures are model edthrough a graph where atoms are considered as vertices and edges are bonds between them. In chemical sciences, topological indices are used for understanding the physicochemical properties of molecules. In this work, we study the generalized Zagreb index for three types of carbon allotrope’s theoretically.


2018 ◽  
Vol 2018 ◽  
pp. 1-8 ◽  
Author(s):  
Young Chel Kwun ◽  
Ashaq Ali ◽  
Waqas Nazeer ◽  
Maqbool Ahmad Chaudhary ◽  
Shin Min Kang

Chemical graph theory is a branch of mathematical chemistry which has an important effect on the development of the chemical sciences. The study of topological indices is currently one of the most active research fields in chemical graph theory. Topological indices help to predict many chemical and biological properties of chemical structures under study. The aim of this report is to study the molecular topology of some benzenoid systems. M-polynomial has wealth of information about the degree-based topological indices. We compute M-polynomials for triangular, hourglass, and jagged-rectangle benzenoid systems, and from these M-polynomials, we recover nine degree-based topological indices. Our results play a vital role in pharmacy, drug design, and many other applied areas.


2020 ◽  
Vol 2020 ◽  
pp. 1-12 ◽  
Author(s):  
Zhen Wang ◽  
Faryal Chaudhry ◽  
Maria Naseem ◽  
Adnan Asghar

In the fields of chemical graph theory, topological index is a type of a molecular descriptor that is calculated based on the graph of a chemical compound. Topological indices help us collect information about algebraic graphs and give us mathematical approach to understand the properties of algebraic structures. With the help of topological indices, we can guess the properties of chemical compounds without performing experiments in wet lab. There are more than 148 topological indices in the literature, but none of them completely give all properties of under study compounds. Together, they do it to some extent; hence, there is always room to introduce new indices. In this paper, we present first and second reserve Zagreb indices and first reverse hyper-Zagreb indices, reverse GA index, and reverse atomic bond connectivity index for the crystallographic structure of molecules. We also present first and second reverse Zagreb polynomials and first and second reverse hyper-Zagreb polynomials for the crystallographic structure of molecules.


2016 ◽  
Vol 94 (2) ◽  
pp. 120-125 ◽  
Author(s):  
Syed Ahtsham Ul Haq Bokhary ◽  
Muhammad Imran ◽  
Sadia Manzoor

Topological indices are numerical parameters of a graph that characterize its topology and are usually graph invariant. In a QSAR/QSPR study, physicochemical properties and topological indices such as the Randić, atom–bond connectivity (ABC), and geometric–arithmetic (GA) indices are used to predict the bioactivity of different chemical compounds. Graph theory has found a considerable use in this area of research. In this paper, we study the degree-based molecular topological indices such as ABC4 and GA5 for certain families of dendrimers. We derive the analytical closed formulae for these classes of dendrimers.


Author(s):  
Zubainun Mohamed Zabidi ◽  
◽  
Ahmad Nazib Alias ◽  
Nurul Aimi Zakaria ◽  
Zaidatul Salwa Mahmud ◽  
...  

New topology indices that are degree-based have been introduced to represent molecular structure from chemical graph theory. The indices give a new sight into the physical properties of the chemical compounds. The correlation of physiochemical properties with chemical graph theory can be done using the Quantitative Structure Properties Relationship (QSPR). Highest Occupied Molecular Orbital (HOMO) and Lowest Unoccupied Molecular Orbital (LUMO) are two basic electronic properties that describe the physiochemical of molecular structure. In computational chemistry, HOMO and LUMO can be calculated by ab initio molecular orbital calculation such as semi-empirical and density functional theory (DFT) method. However, these methods are time-consuming computations. In this paper, predictor model of HOMO and LUMO were developed using Machine Learning algorithms namely Linear Regression, Ridge Regression, LASSO Regression and Elastic Net Regression. The results showed that the performance achievement of each of the machine learning algorithms varied in accordance to the topology indices descriptors and the most outperformed model was presented by Linear Regression with the Moment Balaban Indices (JJ). This paper provides the fundamental design and implementation framework of predicting the HOMO and LUMO electronic properties


Sign in / Sign up

Export Citation Format

Share Document