scholarly journals Exergy and Exergoenvironmental Analysis of a CCHP System Based on a Parallel Flow Double-Effect Absorption Chiller

2016 ◽  
Vol 2016 ◽  
pp. 1-8 ◽  
Author(s):  
Ali Mousafarash

A combined cooling, heating, and power (CCHP) system which produces electricity, heating, and cooling is modeled and analyzed. This system is comprised of a gas turbine, a heat recovery steam generator, and a double-effect absorption chiller. Exergy analysis is conducted to address the magnitude and the location of irreversibilities. In order to enhance understanding, a comprehensive parametric study is performed to see the effect of some major design parameters on the system performance. These design parameters are compressor pressure ratio, gas turbine inlet temperature, gas turbine isentropic efficiency, compressor isentropic efficiency, and temperature of absorption chiller generator inlet. The results show that exergy efficiency of the CCHP system is higher than the power generation system and the cogeneration system. In addition, the results indicate that when waste heat is utilized in the heat recovery steam generator, the greenhouse gasses are reduced when the fixed power output is generated. According to the parametric study results, an increase in compressor pressure ratio shows that the network output first increases and then decreases. Furthermore, an increase in gas turbine inlet temperature increases the system exergy efficiency, decreasing the total exergy destruction rate consequently.

Author(s):  
R. Yadav ◽  
Pradeep Kumar ◽  
Samir Saraswati

This paper presents a comparative study of first and second law thermodynamic analysis of combined and recuperated and non-recuperated steam injected gas turbine cycles. The analysis has been carried out by developing a computer code, which is based on the modeling of various elements of these cycles. The gas turbine chosen for the analysis is MS9001H developed recently by GE and the steam cycle is having a triple-pressure heat recovery steam generator with reheat. It has been observed that the combined cycle is superior to the steam injected cycle, however, the gap narrows down with increasing compressor pressure ratio and high value of turbine inlet temperature. The detailed exergy losses have been presented in various elements of combined and steam injected cycles.


Author(s):  
A. F. Carter

During a study of possible gas turbine cycles for a 2000-hp unit for tank propulsion, it has been established that the level of achievable specific fuel consumption (sfc) is principally determined by the combustor inlet temperature. If a regenerative cycle is selected, a particular value of combustor inlet temperature (and hence sfc) can be produced by an extremely large number of combinations of compressor pressure ratio, turbine inlet temperature, and heat exchanger effectiveness. This paper outlines the overall design considerations which led to the selection of a relatively low pressure ratio engine in which the turbine inlet temperature was sufficiently low that blade cooling was not necessary.


Author(s):  
Sanjay ◽  
Onkar Singh ◽  
B. N. Prasad

This paper reports on the development requirements of gas/steam combined cycle with an aim to achieve plant efficiency greater than 62% through various development possibilities in gas turbine and steam turbine cycle by taking a reference combined cycle configuration (MS9001H gas turbine and three pressure heat recovery steam generator with reheat). The innovative development possibilities include the advanced inlet design to reduce pressure loss, the increase in turbine inlet temperature, use of advanced turbine blade material, increased component efficiency, improved turbine cooling technologies along with better cooling medium, incorporating intercooling, reheat and regeneration either separately or in combination with simple gas turbine cycle using higher compressor pressure ratio, better utilization of heat recovery steam generator, minimum stack temperature, single shaft system configuration, etc. Based on the quantification of each development item, if incorporated in reference cycle, it has been estimated that the combined cycle as the potential to achieve the plant efficiency in excess of 63%.


2018 ◽  
Vol 22 (6 Part A) ◽  
pp. 2641-2651 ◽  
Author(s):  
Moein Shamoushaki ◽  
Mehdi Ehyaei

In this paper, exergy, exergoeconomic, and exergoenvironmental analysis of a gas turbine cycle and its optimization has been carried out by MOPSO algorithm. Three objective functions, namely, total cost rate, exergy efficiency of cycle, and CO2 emission rate have been considered. The design variables considered are: compressor pressure ratio, combustion chamber inlet temperature, gas turbine inlet temperature, compressor, and gas turbine isentropic efficiency. The impact of change in gas turbine inlet temperature and compressor pressure ratio on CO2 emission rate as well as impact of changes in gas turbine inlet temperature on exergy efficiency of the cycle has been investigated in different compressor pressure ratios. The results showed that with increase in compressor pressure ratio and gas turbine inlet temperature, CO2 emission rate decreases, that is this reduction is carried out with a steeper slope at lower pressure compressor ratio and gas turbine inlet temperature. The results showed that exergy efficiency of the cycle increases with increase in gas turbine inlet temperature and compressor pressure ratio. The sensitivity analysis of fuel cost changes was performed on objective functions. The results showed that at higher exergy efficiencies total cost rate is greater, and sensitivity of fuel cost optimum solutions is greater than Pareto curve with lower total cost rate. Also, the results showed that sensitivity of changes in fuel cost rate per unit of energy on total cost rate is greater than the rate of CO2 emission.


Author(s):  
Vyacheslav V. Romanov ◽  
Sergey N. Movchan ◽  
Vladimir N. Chobenko ◽  
Oleg S. Kucherenko ◽  
Valeriy V. Kuznetsov ◽  
...  

Adding an exhaust gas heat recovery system to a gas turbine (GT) increases its overall power output and efficiency. The introduction of an Air Heat Recovery Turbine Unit (AHRTU) using air as the heat-transfer agent is one of the ways of this increasing. This article presents the results of a GT with AHRTU for a turbine inlet temperature range from 573K to 873K and a compressor pressure ratio from 2.5 to 12. Main component performance of the AHRTU, weight and size are determined and optimized to match gas turbines. The potential for use of GT with AHRTU is specified. Exhaust gas heat recovery using a GT with AHRTU enable 4%–6% increases in efficiency (absolute), and 12%–20% increases in power output of mechanical drive plants.


Author(s):  
Mohammad Reza Meigounpoory ◽  
Pouria Ahmadi ◽  
Ahmad Reza Ghaffarizadeh ◽  
Shoaib Khanmohammadi

The thermal-economic optimization of a combined cycle power plant (CCPP) which can provide 140 MW of electrical power is discussed in this paper. The CCPP is composed of a gas turbine cycle (including, air compressor, combustion chamber, gas turbine), heat recovery steam generator (HRSG), steam turbine, condenser system, and a pump. The design parameters of such a plant are compressor pressure ratio (rAC), compressor isentropic efficiency (ηAC) gas turbine isentropic efficiency (ηGT), and turbine inlet temperature (T3), pinch difference temperature (ΔTpinch), steam turbine inlet temperature (Ta), steam turbine isentropic efficiency (ηST), and pump isentropic efficiency (ηPUMP). The objective function was the total cost of the plant in terms of dollar per second, including sum of the operating cost related to the fuel consumption, and the capital investment for equipment purchase and maintenance costs. The optimal values of decision variables were obtained by minimizing the objective function using sequential quadratic programming (SQP). The effects of change in the demanded power and fuel price on the design parameters werestudied for, 100, 120, and 140MW of net power output.


Author(s):  
B W Martin ◽  
A Brown ◽  
M Finnis

This paper continues the computational invcstigalion of optimum performance of a gas turbine configuration incorporating a gas generator, previously reported by the authors. Even for contemporary pressure ratios not previously considered, there appears to be no advantage in prebleeding the coolant air, and within the range considered, as previously found, the amount of coolant preheating has only a secondary effect on maximum engine efficiency. This is also true of the influence of allowable mean blade temperature on maximum engine efficiency, but both factors do have a pronounced effect on the optimum coolant and where maximum cycle efficiency is primarily determined by compressor pressure ratio and component isen-tropic efficiencies. The specific work output is confirmed under optimum conditions to be an almost linear function of the compressor turbine inlet temperature.


Author(s):  
K. Sarabchi ◽  
A. Ansari

Cogeneration is a simultaneous production of heat and electricity in a single plant using the same primary energy. Usage of a cogeneration system leads to fuel energy saving as well as air pollution reduction. A gas turbine cogeneration plant (GTCP) has found many applications in industries and institutions. Although fuel cost is usually reduced in a cogeneration system but the selection of a system for a given site optimally involves detailed thermodynamic and economical investigations. In this paper the performance of a GTCP was investigated and an approach was developed to determine the optimum size of the plant to meet the electricity and heat demands of a given site. A computer code, based on this approach, was developed and it can also be used to examine the effect of key parameters like pressure ratio, turbine inlet temperature, utilization period, and fuel cost on the economics of GTCP.


Author(s):  
Hideto Moritsuka

In order to estimate the possibility to improve thermal efficiency of power generation use gas turbine combined cycle power generation system, benefits of employing the advanced gas turbine technologies proposed here have been made clear based on the recently developed 1500C-class steam cooling gas turbine and 1300C-class reheat cycle gas turbine combined cycle power generation systems. In addition, methane reforming cooling method and NO reducing catalytic reheater are proposed. Based on these findings, the Maximized efficiency Optimized Reheat cycle Innovative Gas Turbine Combined cycle (MORITC) Power Generation System with the most effective combination of advanced technologies and the new devices have been proposed. In case of the proposed reheat cycle gas turbine with pressure ratio being 55, the high pressure turbine inlet temperature being 1700C, the low pressure turbine inlet temperature being 800C, combined with the ultra super critical pressure, double reheat type heat recovery Rankine cycle, the thermal efficiency of combined cycle are expected approximately 66.7% (LHV, generator end).


Sign in / Sign up

Export Citation Format

Share Document