A Parametric Analysis for Optimal Selection of a Gas Turbine Cogeneration System
Cogeneration is a simultaneous production of heat and electricity in a single plant using the same primary energy. Usage of a cogeneration system leads to fuel energy saving as well as air pollution reduction. A gas turbine cogeneration plant (GTCP) has found many applications in industries and institutions. Although fuel cost is usually reduced in a cogeneration system but the selection of a system for a given site optimally involves detailed thermodynamic and economical investigations. In this paper the performance of a GTCP was investigated and an approach was developed to determine the optimum size of the plant to meet the electricity and heat demands of a given site. A computer code, based on this approach, was developed and it can also be used to examine the effect of key parameters like pressure ratio, turbine inlet temperature, utilization period, and fuel cost on the economics of GTCP.