Performances and Application Perspectives of Air Heat Recovery Turbine Units

Author(s):  
Vyacheslav V. Romanov ◽  
Sergey N. Movchan ◽  
Vladimir N. Chobenko ◽  
Oleg S. Kucherenko ◽  
Valeriy V. Kuznetsov ◽  
...  

Adding an exhaust gas heat recovery system to a gas turbine (GT) increases its overall power output and efficiency. The introduction of an Air Heat Recovery Turbine Unit (AHRTU) using air as the heat-transfer agent is one of the ways of this increasing. This article presents the results of a GT with AHRTU for a turbine inlet temperature range from 573K to 873K and a compressor pressure ratio from 2.5 to 12. Main component performance of the AHRTU, weight and size are determined and optimized to match gas turbines. The potential for use of GT with AHRTU is specified. Exhaust gas heat recovery using a GT with AHRTU enable 4%–6% increases in efficiency (absolute), and 12%–20% increases in power output of mechanical drive plants.

2020 ◽  
Vol 2020 ◽  
pp. 1-17
Author(s):  
Chao Deng ◽  
Ahmed N. Abdalla ◽  
Thamir K. Ibrahim ◽  
MingXin Jiang ◽  
Ahmed T. Al-Sammarraie ◽  
...  

In this article, the adaptive neuro-fuzzy inference system (ANFIS) and multiconfiguration gas-turbines are used to predict the optimal gas-turbine operating parameters. The principle formulations of gas-turbine configurations with various operating conditions are introduced in detail. The effects of different parameters have been analyzed to select the optimum gas-turbine configuration. The adopted ANFIS model has five inputs, namely, isentropic turbine efficiency (Teff), isentropic compressor efficiency (Ceff), ambient temperature (T1), pressure ratio (rp), and turbine inlet temperature (TIT), as well as three outputs, fuel consumption, power output, and thermal efficiency. Both actual reported information, from Baiji Gas-Turbines of Iraq, and simulated data were utilized with the ANFIS model. The results show that, at an isentropic compressor efficiency of 100% and turbine inlet temperature of 1900 K, the peak thermal efficiency amounts to 63% and 375 MW of power resulted, which was the peak value of the power output. Furthermore, at an isentropic compressor efficiency of 100% and a pressure ratio of 30, a peak specific fuel consumption amount of 0.033 kg/kWh was obtained. The predicted results reveal that the proposed model determines the operating conditions that strongly influence the performance of the gas-turbine. In addition, the predicted results of the simulated regenerative gas-turbine (RGT) and ANFIS model were satisfactory compared to that of the foregoing Baiji Gas-Turbines.


Author(s):  
Ibrahim Sinan Akmandor ◽  
O¨zhan O¨ksu¨z ◽  
Sec¸kin Go¨kaltun ◽  
Melih Han Bilgin

A new methodology is developed to find the optimal steam injection levels in simple and combined cycle gas turbine power plants. When steam injection process is being applied to simple cycle gas turbines, it is shown to offer many benefits, including increased power output and efficiency as well as reduced exhaust emissions. For combined cycle power plants, steam injection in the gas turbine, significantly decreases the amount of flow and energy through the steam turbine and the overall power output of the combined cycle is decreased. This study focuses on finding the maximum power output and efficiency of steam injected simple and combined cycle gas turbines. For that purpose, the thermodynamic cycle analysis and a genetic algorithm are linked within an automated design loop. The multi-parameter objective function is either based on the power output or on the overall thermal efficiency. NOx levels have also been taken into account in a third objective function denoted as steam injection effectiveness. The calculations are done for a wide range of parameters such as compressor pressure ratio, turbine inlet temperature, air and steam mass flow rates. Firstly, 6 widely used simple and combined cycle power plants performance are used as test cases for thermodynamic cycle validation. Secondly, gas turbine main parameters are modified to yield the maximum generator power and thermal efficiency. Finally, the effects of uniform crossover, creep mutation, different random number seeds, population size and the number of children per pair of parents on the performance of the genetic algorithm are studied. Parametric analyses show that application of high turbine inlet temperature, high air mass flow rate and no steam injection lead to high power and high combined cycle thermal efficiency. On the contrary, when NOx reduction is desired, steam injection is necessary. For simple cycle, almost full amount of steam injection is required to increase power and efficiency as well as to reduce NOx. Moreover, it is found that the compressor pressure ratio for high power output is significantly lower than the compressor pressure ratio that drives the high thermal efficiency.


2016 ◽  
Vol 2016 ◽  
pp. 1-8 ◽  
Author(s):  
Ali Mousafarash

A combined cooling, heating, and power (CCHP) system which produces electricity, heating, and cooling is modeled and analyzed. This system is comprised of a gas turbine, a heat recovery steam generator, and a double-effect absorption chiller. Exergy analysis is conducted to address the magnitude and the location of irreversibilities. In order to enhance understanding, a comprehensive parametric study is performed to see the effect of some major design parameters on the system performance. These design parameters are compressor pressure ratio, gas turbine inlet temperature, gas turbine isentropic efficiency, compressor isentropic efficiency, and temperature of absorption chiller generator inlet. The results show that exergy efficiency of the CCHP system is higher than the power generation system and the cogeneration system. In addition, the results indicate that when waste heat is utilized in the heat recovery steam generator, the greenhouse gasses are reduced when the fixed power output is generated. According to the parametric study results, an increase in compressor pressure ratio shows that the network output first increases and then decreases. Furthermore, an increase in gas turbine inlet temperature increases the system exergy efficiency, decreasing the total exergy destruction rate consequently.


Author(s):  
R. Yadav ◽  
Pradeep Kumar ◽  
Samir Saraswati

This paper presents a comparative study of first and second law thermodynamic analysis of combined and recuperated and non-recuperated steam injected gas turbine cycles. The analysis has been carried out by developing a computer code, which is based on the modeling of various elements of these cycles. The gas turbine chosen for the analysis is MS9001H developed recently by GE and the steam cycle is having a triple-pressure heat recovery steam generator with reheat. It has been observed that the combined cycle is superior to the steam injected cycle, however, the gap narrows down with increasing compressor pressure ratio and high value of turbine inlet temperature. The detailed exergy losses have been presented in various elements of combined and steam injected cycles.


Author(s):  
Ryszard Chodkiewicz ◽  
Jerzy Porochnicki ◽  
Bazyli Kaczan

This study deals with new internal combustion turbine power systems in which a steam-gas mixture is the working medium. Heat is delivered to the system by injecting gaseous fuel and steam into the combustion chamber. Unlike in STIG systems, the fluid expansion in the turbine is much deeper (much below the atmospheric pressure) and the exhaust gas is cooled in a heat exchanger-condenser in such a manner that a significant amount of water can be recovered. The non-condensing gases (CO2 + N2 + rest of O2) from the exhaust fluid are compressed, after additional cooling, and discharged into the atmosphere. If a cheap or waste fuel is available, the steam to be injected into the combustor can be produced in a waste fuel-burning boiler or in conventional coal boiler. In this case the heat exchanger between the turbine and condenser can deliver significant amounts of useful (process or district) heat or / and preheated feedwater for the boiler. The efficiency analysis of this new energy system shows a growth by more than 10 percent points in comparison with the conventional STIG engine, at the same pressure ratio and turbine inlet temperature.


1987 ◽  
Vol 109 (1) ◽  
pp. 1-7 ◽  
Author(s):  
I. G. Rice

This paper presents a heat balance method of evaluating various open-cycle gas turbines and heat recovery systems based on the first law of thermodynamics. A useful graphic solution is presented that can be readily applied to various gas turbine cogeneration configurations. An analysis of seven commercially available gas turbines is made showing the effect of pressure ratio, exhaust temperature, intercooling, regeneration, and turbine rotor inlet temperature in regard to power output, heat recovery, and overall cycle efficiency. The method presented can be readily programmed in a computer, for any given gaseous or liquid fuel, to yield accurate evaluations. An X–Y plotter can be utilized to present the results.


1974 ◽  
Author(s):  
V. V. Uvarov ◽  
V. S. Beknev ◽  
E. A. Manushin

There are two different approaches to develop the gas turbines for power. One can get some megawatts by simple cycle or by more complex cycle units. Both units require very different levels of turbine inlet temperature and pressure ratio for the same unit capacity. Both approaches are discussed. These two approaches lead to different size and efficiencies of gas turbine units for power. Some features of the designing problems of such units are discussed.


Author(s):  
A. F. Carter

During a study of possible gas turbine cycles for a 2000-hp unit for tank propulsion, it has been established that the level of achievable specific fuel consumption (sfc) is principally determined by the combustor inlet temperature. If a regenerative cycle is selected, a particular value of combustor inlet temperature (and hence sfc) can be produced by an extremely large number of combinations of compressor pressure ratio, turbine inlet temperature, and heat exchanger effectiveness. This paper outlines the overall design considerations which led to the selection of a relatively low pressure ratio engine in which the turbine inlet temperature was sufficiently low that blade cooling was not necessary.


1971 ◽  
Vol 93 (1) ◽  
pp. 28-32
Author(s):  
M. M. Nagib

An appreciable improvement in the performance of gas turbines operating with ambient temperatures above 90 deg F could be achieved by combining an absorption-refrigeration unit to the power cycle. The thermal energy in the exhaust gases from the turbine is used to operate the refrigeration unit, which in turn cools the air prior to entering the compressor. This reduction in compressor-inlet temperature results an average improvement of about 7–9 points in the thermal efficiency of the combined cycle as well as an increase in the specific output. The analysis includes the effect of different cycle parameters such as compressor pressure ratio, maximum cycle temperature, and regeneration.


Author(s):  
Ching-Jen C. J. Tang

Humidified Gas Turbine (HGT) cycles such as the Evaporative Gas Turbine (EGT) and the Steam-Injected Gas Turbine (STIG) using humid air as the working medium do not require a complete steam turbine bottoming cycle; thus, their initial capital costs are not as high as those for the conventional combined cycles. The performance of a HGT cycle could be comparable to a state-of-the-art combined cycle for small loads. The availability of the steam from a HGT cycle presents opportunities for designing steam-cooled blades. Since the specific heat capacity for steam is higher than that for air, steam could potentially be a better coolant for turbine blades than air, resulting in higher cycle efficiency. In this study, three known HGT cycles are evaluated in terms of their electrical efficiencies and power outputs: the STIG, the Part-flow Evaporative Gas Turbine (PEvGT), and the combined STIG cycles. All the three HGT cycles are analyzed in two cooling options: steam and air coolings. The HGT cycles will be evaluated using consistent thermodynamic properties and assumptions. Like a simple gas turbine cycle, the HGT cycles are based on the well-known Brayton cycle whose performance is dictated by the cycle pressure ratio and turbine inlet temperature. Therefore, the electrical efficiencies and power outputs of the HGT cycles will be calculated as a function of the cycle pressure ratio and turbine inlet temperature. The steam-cooled cycles provide advantages over the air-cooled cycles in the electrical efficiency, power output, and combustion stability. The steam cooling improves the electrical efficiency by approximately 1.4 percentage points for the STIG cycle, by approximately 1.7 percentage points for the PEvGT cycle, and by approximately 1 percentage point for the combined STIG cycle. The maximum electrical efficiency of the steam-cooled PEvGT cycle is 54.6%, only 0.2 percentage points higher than that for the steam-cooled combined STIG cycle. The steam cooling generally results in more power output than the air cooling does for all the HGT cycles at most operating conditions. In addition, the steam cooling reduces the water content of the humid air entering the combustor, leading to significantly improved combustion stability.


Sign in / Sign up

Export Citation Format

Share Document