scholarly journals Peroxisome Proliferator-Activated Receptor γ Induces the Expression of Tissue Factor Pathway Inhibitor-1 (TFPI-1) in Human Macrophages

PPAR Research ◽  
2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
G. Chinetti-Gbaguidi ◽  
C. Copin ◽  
B. Derudas ◽  
N. Marx ◽  
J. Eechkoute ◽  
...  

Tissue factor (TF) is the initiator of the blood coagulation cascade after interaction with the activated factor VII (FVIIa). Moreover, the TF/FVIIa complex also activates intracellular signalling pathways leading to the production of inflammatory cytokines. The TF/FVIIa complex is inhibited by the tissue factor pathway inhibitor-1 (TFPI-1). Peroxisome proliferator-activated receptor gamma (PPARγ) is a transcription factor that, together with PPARα and PPARβ/δ, controls macrophage functions. However, whether PPARγ activation modulates the expression of TFP1-1 in human macrophages is not known. Here we report that PPARγ activation increases the expression of TFPI-1 in human macrophages in vitro as well as in vivo in circulating peripheral blood mononuclear cells. The induction of TFPI-1 expression by PPARγ ligands, an effect shared by the activation of PPARα and PPARβ/δ, occurs also in proinflammatory M1 and in anti-inflammatory M2 polarized macrophages. As a functional consequence, treatment with PPARγ ligands significantly reduces the inflammatory response induced by FVIIa, as measured by variations in the IL-8, MMP-2, and MCP-1 expression. These data identify a novel role for PPARγ in the control of TF the pathway.

2001 ◽  
Vol 85 (05) ◽  
pp. 830-836
Author(s):  
Anguo Li ◽  
Alvin Chang ◽  
Glenn Peer ◽  
Tze-Chen Wun ◽  
Fletcher Taylor

SummaryTissue factor pathway inhibitor (TFPI) is a kunitz-type inhibitor of activated factor X (Xa). TFPI was reported to mediate Xa binding to a few of carcinoma cell lines. In this study it was observed that the Xa activity associated with human peripheral blood mononuclear cells (PBMC) incubated with Xa in the presence of recombinant TFPI (rTFPI) was much higher than with Xa alone. Xa activity on PBMC was also observed after whole blood was incubated with pre-formed Xa/TFPI complex. Further studies with flow cytometric analysis demonstrate that rTFPI enhances the binding of Xa to human monocytes. Western blot analysis showed that rTFPI was cleaved into a few of fragments after its incubation with monocytes either in the presence or absence of Xa. Based on these results and the observations reported by others, we speculate that Xa/TFPI complex may bind to human monocytes by a yet unidentified mechanism. The recovery of Xa activity from Xa/TFPI complex on PBMC may be related to the cleavage of rTFPI by Xa and/or monocyte proteases. This observation suggests a new mechanism by which monocytes become procoagulant in some pathological conditions in addition of the well known tissue factor expression on proinflammatic monocytes.


Blood ◽  
1994 ◽  
Vol 83 (9) ◽  
pp. 2516-2525 ◽  
Author(s):  
K Meszaros ◽  
S Aberle ◽  
R Dedrick ◽  
R Machovich ◽  
A Horwitz ◽  
...  

Abstract Mononuclear phagocytes, stimulated by bacterial lipopolysaccharide (LPS), have been implicated in the activation of coagulation in sepsis and endotoxemia. In monocytes LPS induces the synthesis of tissue factor (TF) which, assembled with factor VII, initiates the blood coagulation cascades. In this study we investigated the mechanism of LPS recognition by monocytes, and the consequent expression of TF mRNA and TF activity. We also studied the inhibition of these effects of LPS by rBPI23, a 23-kD recombinant fragment of bactericidal/permeability increasing protein, which has been shown to antagonize LPS in vitro and in vivo. Human peripheral blood mononuclear cells, or monocytes isolated by adherence, were stimulated with Escherichia coli O113 LPS at physiologically relevant concentrations (> or = 10 pg/mL). The effect of LPS was dependent on the presence of the serum protein LBP (lipopolysaccharide-binding protein), as shown by the potentiating effect of human recombinant LBP or serum. Furthermore, recognition of low amounts of LPS by monocytes was also dependent on CD14 receptors, because monoclonal antibodies against CD14 greatly reduced the LPS sensitivity of monocytes in the presence of serum or rLBP. Induction of TF activity and mRNA expression by LPS were inhibited by rBPI23. The expression of tumor necrosis factor showed qualitatively similar changes. Considering the involvement of LPS-induced TF in the potentially lethal intravascular coagulation in sepsis, inhibition of TF induction by rBPI23 may be of therapeutic benefit.


2005 ◽  
Vol 25 (3) ◽  
pp. 646-649 ◽  
Author(s):  
Mirko Pinotti ◽  
Cristiano Bertolucci ◽  
Francesco Portaluppi ◽  
Ilaria Colognesi ◽  
Elena Frigato ◽  
...  

2001 ◽  
Vol 101 (5) ◽  
pp. 367-375 ◽  
Author(s):  
Anne Vambergue ◽  
Lucia Rugeri ◽  
Valérie Gaveriaux ◽  
Patrick Devos ◽  
Annie Martin ◽  
...  

Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 803-803
Author(s):  
Haiwang Tang ◽  
Lacramioara Ivanciu ◽  
Todd Hamm ◽  
Fletcher B. Taylor ◽  
Cristina Lupu ◽  
...  

Abstract Activation of tissue factor (TF)-dependent coagulation is an early event in the pathogenesis of sepsis, responsible for microvascular thrombosis and consequent organ injury. We hypothesized that sepsis-induced TF procoagulant activity may be paralleled by a decreased expression or function of its natural inhibitor, tissue factor pathway inhibitor (TFPI). To test this hypothesis we used a non-human primate sepsis model in which adult baboons were infused with live E. coli at 109 CFU/kg (sublethal dose), 1010 CFU/kg (lethal dose) or saline (control group) and the animals were sacrified after 2, 8, or 24 hours. Lung tissue was snap frozen for protein and mRNA extraction or fixed and processed for light and electron microscopy. Tissue cryosections were immunostained using double/multiple fluorescence labeling approaches for TF, TFPI, factor VII/FVIIa and fibrin, in conjunction with cell markers for endothelial cells (CD31 or von Willebrand factor), leukocytes (PSGL-1), macrophages (CD68), PMN (myeloperoxidase) and platelets (gpIIb/IIIa). Large amounts of TF were detected in leukocytes, endothelial cells and platelet-rich microthrombi, starting from 2 hours and throughout the examined period. Concomitantly, confocal and electron microscopy analysis revealed increased leukocyte infiltration, platelet aggregates and fibrin deposition in the intravascular and interstitial compartments. In addition, TF induction was documented by semiquantitative RT-PCR, ELISA, western blot and factor Xa activation assays. Whereas TFPI mRNA showed only a modest increase, tissue-associated TFPI protein was found considerably decreased, especially during the first eight hours post E. coli infusion. Moreover, TFPI inhibitory activity of lung extracts from septic animals was 6–8 fold lower comparing to controls. TF activity measurements in the presence of inhibitory anti TFPI antibodies showed that only a very small fraction of endogenous TF was inhibited by tissue-associated TFPI, suggesting that most of the active TFPI available in the vascular compartment was depleted. The decrease of TFPI inhibitory potency cannot be exclusively explained by its proteolytic degradation, as we did not find significant amounts of truncated TFPI on western blots. In conclusion, our studies demonstrate that the exposure to septic and inflammatory stimuli lead to a decrease of TFPI-dependent endothelial anticoagulant potential, simultaneous with a strong TF-dependent procoagulant response. Activation of TF-dependent coagulation pathway not adequately countered by TFPI may have important roles in the pathogenesis of sepsis-associated disseminated intravascular coagulation. Strategies aimed to restore the physiological anticoagulant function of TFPI may help preventing sepsis-induced multiple organ dysfunction syndrome and death.


Sign in / Sign up

Export Citation Format

Share Document