scholarly journals Matrine Attenuates COX-2 and ICAM-1 Expressions in Human Lung Epithelial Cells and Prevents Acute Lung Injury in LPS-Induced Mice

2016 ◽  
Vol 2016 ◽  
pp. 1-12 ◽  
Author(s):  
Chian-Jiun Liou ◽  
You-Rong Lai ◽  
Ya-Ling Chen ◽  
Yi-Hsien Chang ◽  
Zih-Ying Li ◽  
...  

Matrine is isolated from Sophora flavescens and shows anti-inflammatory effects in macrophages. Here we evaluated matrine’s suppressive effects on cyclooxygenase 2 (COX-2) and intercellular adhesion molecule-1 (ICAM-1) expressions in lipopolysaccharide- (LPS-) stimulated human lung epithelial A549 cells. Additionally, BALB/c mice were given various matrine doses by intraperitoneal injection, and then lung injury was induced via intratracheal instillation of LPS. In LPS-stimulated A549 cells, matrine inhibited the productions of interleukin-8 (IL-8), monocyte chemotactic protein-1, and IL-6 and decreased COX-2 expression. Matrine treatment also decreased ICAM-1 protein expression and suppressed the adhesion of neutrophil-like cells to inflammatory A549 cells. In vitro results demonstrated that matrine significantly inhibited mitogen-activated protein kinase phosphorylation and decreased nuclear transcription factor kappa-B subunit p65 protein translocation into the nucleus. In vivo data indicated that matrine significantly inhibited neutrophil infiltration and suppressed productions of tumor necrosis factor-α and IL-6 in mouse bronchoalveolar lavage fluid and serum. Analysis of lung tissue showed that matrine decreased the gene expression of proinflammatory cytokines, chemokines, COX-2, and ICAM-1. Our findings suggest that matrine improved lung injury in mice and decreased the inflammatory response in human lung epithelial cells.

2001 ◽  
Vol 280 (1) ◽  
pp. L30-L38 ◽  
Author(s):  
Jun Araya ◽  
Muneharu Maruyama ◽  
Kazuhiko Sassa ◽  
Tadashi Fujita ◽  
Ryuji Hayashi ◽  
...  

Radiation pneumonitis is a major complication of radiation therapy. However, the detailed cellular mechanisms have not been clearly defined. Based on the recognition that basement membrane disruption occurs in acute lung injury and that matrix metalloproteinase (MMP)-2 can degrade type IV collagen, one of the major components of the basement membrane, we hypothesized that ionizing radiation would modulate MMP-2 production in human lung epithelial cells. To evaluate this, the modulation of MMP-2 with irradiation was investigated in normal human bronchial epithelial cells as well as in A549 cells. We measured the activity of MMP-2 in the conditioned medium with zymography and the MMP-2 mRNA level with RT-PCR. Both of these cells constitutively expressed 72-kDa gelatinolytic activity, corresponding to MMP-2, and exposure to radiation increased this activity. Consistent with the data of zymography, ionizing radiation increased the level of MMP-2 mRNA. This radiation-induced increase in MMP-2 expression was mediated via p53 because the p53 antisense oligonucleotide abolished the increase in MMP-2 activity as well as the accumulation of p53 after irradiation in A549 cells. These results indicate that MMP-2 expression by human lung epithelial cells is involved in radiation-induced lung injury.


2013 ◽  
Vol 24 (6) ◽  
pp. 858-869 ◽  
Author(s):  
Sudjit Luanpitpong ◽  
Pithi Chanvorachote ◽  
Christian Stehlik ◽  
William Tse ◽  
Patrick S. Callery ◽  
...  

Hydrogen peroxide is a key mediator of oxidative stress known to be important in various cellular processes, including apoptosis. B-cell lymphoma-2 (Bcl-2) is an oxidative stress–responsive protein and a key regulator of apoptosis; however, the underlying mechanisms of oxidative regulation of Bcl-2 are not well understood. The present study investigates the direct effect of H2O2on Bcl-2 cysteine oxidation as a potential mechanism of apoptosis regulation. Exposure of human lung epithelial cells to H2O2induces apoptosis concomitant with cysteine oxidation and down-regulation of Bcl-2. Inhibition of Bcl-2 oxidation by antioxidants or by site-directed mutagenesis of Bcl-2 at Cys-158 and Cys-229 abrogates the effects of H2O2on Bcl-2 and apoptosis. Immunoprecipitation and confocal microscopic studies show that Bcl-2 interacts with mitogen-activated protein kinase (extracellular signal-regulated kinase 1/2 [ERK1/2]) to suppress apoptosis and that this interaction is modulated by cysteine oxidation of Bcl-2. The H2O2-induced Bcl-2 cysteine oxidation interferes with Bcl-2 and ERK1/2 interaction. Mutation of the cysteine residues inhibits the disruption of Bcl-2–ERK complex, as well as the induction of apoptosis by H2O2. Taken together, these results demonstrate the critical role of Bcl-2 cysteine oxidation in the regulation of apoptosis through ERK signaling. This new finding reveals crucial redox regulatory mechanisms that control the antiapoptotic function of Bcl-2.


2004 ◽  
Vol 78 (15) ◽  
pp. 8146-8158 ◽  
Author(s):  
Santanu Bose ◽  
Mausumi Basu ◽  
Amiya K. Banerjee

ABSTRACT Human parainfluenza virus type 3 (HPIV-3) is an airborne pathogen that infects human lung epithelial cells from the apical (luminal) plasma membrane domain. In the present study, we have identified cell surface-expressed nucleolin as a cellular cofactor required for the efficient cellular entry of HPIV-3 into human lung epithelial A549 cells. Nucleolin was enriched on the apical cell surface domain of A549 cells, and HPIV-3 interacted with nucleolin during entry. The importance of nucleolin during HPIV-3 replication was borne out by the observation that HPIV-3 replication was significantly inhibited following (i) pretreatment of cells with antinucleolin antibodies and (ii) preincubation of HPIV-3 with purified nucleolin prior to its addition to the cells. Moreover, HPIV-3 cellular internalization and attachment assays performed in the presence of antinucleolin antibodies and purified nucleolin revealed the requirement of nucleolin during HPIV-3 internalization but not during attachment. Thus, these results suggest that nucleolin expressed on the surfaces of human lung epithelial A549 cells plays an important role during HPIV-3 cellular entry.


2015 ◽  
Vol 6 (6) ◽  
pp. 1960-1967 ◽  
Author(s):  
Wen-Chung Huang ◽  
Shu-Ju Wu ◽  
Rong-Syuan Tu ◽  
You-Rong Lai ◽  
Chian-Jiun Liou

Phloretin inhibited proinflammatory cytokine and COX-2 expression in IL-1β-activated human lung epithelial cells.


2013 ◽  
Vol 62 (8) ◽  
pp. 1144-1152 ◽  
Author(s):  
Sara Remuzgo-Martínez ◽  
Lilian Pilares-Ortega ◽  
Lorena Álvarez-Rodríguez ◽  
Maitane Aranzamendi-Zaldunbide ◽  
Daniel Padilla ◽  
...  

Rhodococcus equi is an opportunistic human pathogen associated with immunosuppressed people. While the interaction of R. equi with macrophages has been comprehensively studied, little is known about its interactions with non-phagocytic cells. Here, we characterized the entry process of this bacterium into human lung epithelial cells. The invasion is inhibited by nocodazole and wortmannin, suggesting that the phosphatidylinositol 3-kinase pathway and microtubule cytoskeleton are important for invasion. Pre-incubation of R. equi with a rabbit anti-R. equi polyclonal antiserum resulted in a dramatic reduction in invasion. Also, the invasion process as studied by immunofluorescence and scanning electron microscopy indicates that R. equi make initial contact with the microvilli of the A549 cells, and at the structural level, the entry process was observed to occur via a zipper-like mechanism. Infected lung epithelial cells upregulate the expression of cytokines IL-8 and IL-6 upon infection. The production of these pro-inflammatory cytokines was significantly enhanced in culture supernatants from cells infected with non-mucoid plasmid-less strains when compared with cells infected with mucoid strains. These results demonstrate that human airway epithelial cells produce pro-inflammatory mediators against R. equi isolates.


Author(s):  
Maizbha U. Ahmed ◽  
Mohammad A. K. Azad ◽  
Mengyao Li ◽  
Darren J. Creek ◽  
Meiling Han ◽  
...  

Inhaled polymyxins are associated with toxicity in human lung epithelial cells involving multiple apoptotic pathways. However, the mechanism of polymyxin-induced pulmonary toxicity remains unclear. This study aimed to investigate polymyxin-induced metabolomic perturbations in human lung epithelial A549 cells. A549 cells were treated with 0.5 or 1.0 mM of polymyxin B or colistin for 1, 4, and 24 h. Cellular metabolites were analyzed using LC-MS/MS and significantly perturbed metabolites (log 2 fold change [FC]≥1, FDR≤0.2) and key pathways were identified relative to untreated control samples. At 1 and 4 h very few significant changes in metabolites were observed relative to the untreated control cells. At 24 h, taurine (log 2 FC = -1.34±0.64) and hypotaurine (log 2 FC = -1.20±0.27) were significantly decreased by 1.0 mM polymyxin B. The reduced form of glutathione (GSH) was significantly depleted by 1.0 mM of polymyxin B at 24 h (log 2 FC = -1.80±0.42). Conversely, oxidized glutathione (GSSG) was significantly increased by 1.0 mM of both polymyxin B (log 2 FC = 1.38±0.13 at 4 h and 2.09 ± 0.20 at 24 h) and colistin (log 2 FC = 1.33±0.24 at 24 h). L-carnitine was significantly decreased by 1.0 mM of both polymyxins at 24 h, as were several key metabolites involved in biosynthesis and degradation of choline and ethanolamine (log 2 FC≤-1); several phosphatidylserines were also increased (log 2 FC≥1). Polymyxins perturbed key metabolic pathways maintaining cellular redox balance, mitochondrial β-oxidation, and membrane lipid biogenesis. These mechanistic findings may assist in developing new pharmacokinetic/pharmacodynamic strategies to attenuate the pulmonary toxicities of inhaled polymyxins and the discovery of new-generation polymyxins.


2008 ◽  
Vol 54 (3) ◽  
pp. 189-200 ◽  
Author(s):  
Xin-Ming Song ◽  
Wayne Connor ◽  
Shakiba Jalal ◽  
Karsten Hokamp ◽  
Andrew A. Potter

Streptococcus pneumoniae infection starts from the respiratory tract where interaction with host epithelial cells occurs. To gain more insights on pneumococcal pathogenesis, an oligonucleotide (oligo)-based microarray was used to investigate gene expression changes of one serotype 3 encapsulated pathogenic S. pneumoniae strain 82 and one unencapsulated avirulent S. pneumoniae strain R6 upon exposure to human lung epithelial cells (A549) for 1 and 3 h, respectively. We observed that genes associated with many functional categories were differentially regulated in strain 82, such as genes in pathogenesis, cell envelope, transcription, translation, transport, metabolism, and unknown functions. In contrast, few genes were changed in strain R6 except for genes in ribonucleotide biosynthesis and unknown functions. Quantitative real-time PCR analysis confirmed the microarray results for most of the genes tested. To further characterize functions of the selected genes, knockout mutants were constructed in strain R6. We demonstrated that 2 genetic loci, SP_2170 (AdcB, zinc ABC transporter) and SP_0157 (hypothetical protein), were involved in adherence to A549 cells. These data suggest that divergent gene expression changes occur in S. pneumoniae pathogenic and avirulent strains during interaction with human lung epithelial cells. Some of those genes are involved in pneumococcal pathogenesis.


1997 ◽  
Vol 272 (6) ◽  
pp. L1098-L1104 ◽  
Author(s):  
B. Kamosinska ◽  
M. W. Radomski ◽  
M. Duszyk ◽  
A. Radomski ◽  
S. F. Man

Epithelial Cl- channels are regulated by various physiological factors, including guanosine 3',5'-cyclic monophosphate (cGMP). Because cGMP mediates many of the physiological actions of nitric oxide (NO), we have studied both the presence of endogenous NO and the effects of exogenous NO on Cl- currents in A549 human lung epithelial cells. We have detected Ca(2+)-dependent NO synthase activity in A549 cells. Using the perforated patch-clamp technique, we have shown that inhibition of this enzyme by NG-monomethyl-L-arginine decreased Cl- current, an effect that was reversed by the NO donor S-nitrosoglutathione (GSNO). In addition, the NO donors GSNO and S-nitroso-N-acetyl-D,L-penicillamine increased whole-cell Cl- currents in A549 cells. This stimulatory effect of the NO donors was sensitive to inhibition by 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid, suggesting that channels other than the cystic fibrosis transmembrane conductance regulator (CFTR) are involved in the action of NO on A549 cells. In addition, 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one, a selective inhibitor of soluble guanylyl cyclase, decreased NO-mediated stimulation of Cl- currents. Our results suggest that, in lung epithelial cells, NO regulates a non-CFTR Cl- conductance acting via a cGMP-dependent mechanism.


Sign in / Sign up

Export Citation Format

Share Document