scholarly journals Instance-Wise Denoising Autoencoder for High Dimensional Data

2016 ◽  
Vol 2016 ◽  
pp. 1-13 ◽  
Author(s):  
Lin Chen ◽  
Wan-Yu Deng

Denoising Autoencoder (DAE) is one of the most popular fashions that has reported significant success in recent neural network research. To be specific, DAE randomly corrupts some features of the data to zero as to utilize the cooccurrence information while avoiding overfitting. However, existing DAE approaches do not fare well on sparse and high dimensional data. In this paper, we present a Denoising Autoencoder labeled here as Instance-Wise Denoising Autoencoder (IDA), which is designed to work with high dimensional and sparse data by utilizing the instance-wise cooccurrence relation instead of the feature-wise one. IDA works ahead based on the following corruption rule: if an instance vector of nonzero feature is selected, it is forced to become a zero vector. To avoid serious information loss in the event that too many instances are discarded, an ensemble of multiple independent autoencoders built on different corrupted versions of the data is considered. Extensive experimental results on high dimensional and sparse text data show the superiority of IDA in efficiency and effectiveness. IDA is also experimented on the heterogenous transfer learning setting and cross-modal retrieval to study its generality on heterogeneous feature representation.

2020 ◽  
Vol 49 (3) ◽  
pp. 421-437
Author(s):  
Genggeng Liu ◽  
Lin Xie ◽  
Chi-Hua Chen

Dimensionality reduction plays an important role in the data processing of machine learning and data mining, which makes the processing of high-dimensional data more efficient. Dimensionality reduction can extract the low-dimensional feature representation of high-dimensional data, and an effective dimensionality reduction method can not only extract most of the useful information of the original data, but also realize the function of removing useless noise. The dimensionality reduction methods can be applied to all types of data, especially image data. Although the supervised learning method has achieved good results in the application of dimensionality reduction, its performance depends on the number of labeled training samples. With the growing of information from internet, marking the data requires more resources and is more difficult. Therefore, using unsupervised learning to learn the feature of data has extremely important research value. In this paper, an unsupervised multilayered variational auto-encoder model is studied in the text data, so that the high-dimensional feature to the low-dimensional feature becomes efficient and the low-dimensional feature can retain mainly information as much as possible. Low-dimensional feature obtained by different dimensionality reduction methods are used to compare with the dimensionality reduction results of variational auto-encoder (VAE), and the method can be significantly improved over other comparison methods.


Author(s):  
Xi Cheng ◽  
Clément Henry ◽  
Francesco P. Andriulli ◽  
Christian Person ◽  
Joe Wiart

This paper focuses on quantifying the uncertainty in the specific absorption rate values of the brain induced by the uncertain positions of the electroencephalography electrodes placed on the patient’s scalp. To avoid running a large number of simulations, an artificial neural network architecture for uncertainty quantification involving high-dimensional data is proposed in this paper. The proposed method is demonstrated to be an attractive alternative to conventional uncertainty quantification methods because of its considerable advantage in the computational expense and speed.


Outlier detection is an interesting research area in machine learning. With the recently emergent tools and varied applications, the attention of outlier recognition is growing significantly. Recently, a significant number of outlier detection approaches have been observed and effectively applied in a wide range of fields, comprising medical health, credit card fraud and intrusion detection. They can be utilized for conservative data analysis. However, Outlier recognition aims to discover sequence in data that do not conform to estimated performance. In this paper, we presented a statistical approach called Z-score method for outlier recognition in high-dimensional data. Z-scores is a novel method for deciding distant data based on data positions on charts. The projected method is computationally fast and robust to outliers’ recognition. A comparative Analysis with extant methods is implemented with high dimensional datasets. Exploratory outcomes determines an enhanced accomplishment, efficiency and effectiveness of our projected methods.


Author(s):  
Liping Jing ◽  
Michael K. Ng ◽  
Joshua Zhexue Huang

High dimensional data is a phenomenon in real-world data mining applications. Text data is a typical example. In text mining, a text document is viewed as a vector of terms whose dimension is equal to the total number of unique terms in a data set, which is usually in thousands. High dimensional data occurs in business as well. In retails, for example, to effectively manage supplier relationship, suppliers are often categorized according to their business behaviors (Zhang, Huang, Qian, Xu, & Jing, 2006). The supplier’s behavior data is high dimensional, which contains thousands of attributes to describe the supplier’s behaviors, including product items, ordered amounts, order frequencies, product quality and so forth. One more example is DNA microarray data. Clustering high-dimensional data requires special treatment (Swanson, 1990; Jain, Murty, & Flynn, 1999; Cai, He, & Han, 2005; Kontaki, Papadopoulos & Manolopoulos., 2007), although various methods for clustering are available (Jain & Dubes, 1988). One type of clustering methods for high dimensional data is referred to as subspace clustering, aiming at finding clusters from subspaces instead of the entire data space. In a subspace clustering, each cluster is a set of objects identified by a subset of dimensions and different clusters are represented in different subsets of dimensions. Soft subspace clustering considers that different dimensions make different contributions to the identification of objects in a cluster. It represents the importance of a dimension as a weight that can be treated as the degree of the dimension in contribution to the cluster. Soft subspace clustering can find the cluster memberships of objects and identify the subspace of each cluster in the same clustering process.


Entropy ◽  
2021 ◽  
Vol 23 (3) ◽  
pp. 339
Author(s):  
Xiaowei Xu ◽  
Jingyi Feng ◽  
Liu Zhan ◽  
Zhixiong Li ◽  
Feng Qian ◽  
...  

As a complex field-circuit coupling system comprised of electric, magnetic and thermal machines, the permanent magnet synchronous motor of the electric vehicle has various operating conditions and complicated condition environment. There are various forms of failure, and the signs of failure are crossed or overlapped. Randomness, secondary, concurrency and communication characteristics make it difficult to diagnose faults. Meanwhile, the common intelligent diagnosis methods have low accuracy, poor generalization ability and difficulty in processing high-dimensional data. This paper proposes a method of fault feature extraction for motor based on the principle of stacked denoising autoencoder (SDAE) combined with the support vector machine (SVM) classifier. First, the motor signals collected from the experiment were processed, and the input data were randomly damaged by adding noise. Furthermore, according to the experimental results, the network structure of stacked denoising autoencoder was constructed, the optimal learning rate, noise reduction coefficient and the other network parameters were set. Finally, the trained network was used to verify the test samples. Compared with the traditional fault extraction method and single autoencoder method, this method has the advantages of better accuracy, strong generalization ability and easy-to-deal-with high-dimensional data features.


Author(s):  
Wenguang Xie ◽  
Kang Wu ◽  
Fang Yan ◽  
Haobin Shi ◽  
Xiaocheng Zhang

It is crucial to develop an effective controller for the multi-UAV system to contribute to the frontier fields, such as the electronic warfare. To address the dilemma of the cooperative formation with the high dimensional data, a deep neural network(NN) controller is developed in this paper. Firstly, a deep NN model is used to tune parameters of PID controller online. Secondly, this paper introduces an improved deep NN model integrating the momentum to improve the performance of the classical NN model and satisfy the condition for the real time cooperative formation. Lastly, the cooperative formation task is achieved by extending the proposed cooperative controller with an improved NN to the complex multi-UAV system. The simulation result of multi-UAV formation demonstrates the effectiveness of the proposed method, which achieves a faster formation than competitors.


10.5772/9165 ◽  
2010 ◽  
Author(s):  
Urska Cvek ◽  
Marjan Trutschl ◽  
John Cliffor

Sign in / Sign up

Export Citation Format

Share Document