scholarly journals Analysis of the Complete Mitochondrial Genome Sequence of the Diploid CottonGossypium raimondiiby Comparative Genomics Approaches

2016 ◽  
Vol 2016 ◽  
pp. 1-18 ◽  
Author(s):  
Changwei Bi ◽  
Andrew H. Paterson ◽  
Xuelin Wang ◽  
Yiqing Xu ◽  
Dongyang Wu ◽  
...  

Cotton is one of the most important economic crops and the primary source of natural fiber and is an important protein source for animal feed. The complete nuclear and chloroplast (cp) genome sequences ofG. raimondiiare already available but not mitochondria. Here, we assembled the complete mitochondrial (mt) DNA sequence ofG. raimondiiinto a circular genome of length of 676,078 bp and performed comparative analyses with other higher plants. The genome contains 39 protein-coding genes, 6 rRNA genes, and 25 tRNA genes. We also identified four larger repeats (63.9 kb, 10.6 kb, 9.1 kb, and 2.5 kb) in this mt genome, which may be active in intramolecular recombination in the evolution of cotton. Strikingly, nearly all of theG. raimondiimt genome has been transferred to nucleus on Chr1, and the transfer event must be very recent. Phylogenetic analysis reveals thatG. raimondii, as a member of Malvaceae, is much closer to another cotton (G. barbadense) than other rosids, and the clade formed by twoGossypiumspecies is sister to Brassicales. TheG. raimondiimt genome may provide a crucial foundation for evolutionary analysis, molecular biology, and cytoplasmic male sterility in cotton and other higher plants.

2020 ◽  
Author(s):  
Yan Cheng ◽  
Xiaoxue He ◽  
S. V. G. N. Priyadarshani ◽  
Yu Wang ◽  
Li Ye ◽  
...  

Abstract Background Suaeda glauca is a halophyte widely distributed in saline and sandy beaches, with strong saline-alkali tolerance. It is also a beautiful landscape plant with high development prospects and scientific research value. The S. glauca chloroplast genome has recently been reported; however, the mitochondria genome is still unexplored. Results This study assembled the mitochondria genome and annotated the mitochondrial genes of S. glauca based on the Pacbio long reads. The circular mitochondrial genome of S. glauca has a length of 474,330 bp. The base composition of the S. glauca mt genome showed A (27.96%), T (28.01%), C (21.64%), G (21.64%). S. glauca mt genome has 51 genes, including 26 protein-coding genes, 22 tRNA genes, and 3 rRNA genes. Phylogenetic analysis with common genes of 28 species resulted in similar morphological classification. Conclusions As a Chenopodiaceae species, S. glauca mt genome will provide insights into the missing pieces in the evolution of sex determination and improve genomic breeding in the future.


Genome ◽  
2016 ◽  
Vol 59 (1) ◽  
pp. 37-49 ◽  
Author(s):  
Qiu-Ning Liu ◽  
Xin-Yue Chai ◽  
Dan-Dan Bian ◽  
Chun-Lin Zhou ◽  
Bo-Ping Tang

The mitochondrial (mt) genome can provide important information for the understanding of phylogenetic relationships. The complete mt genome of Plodia interpunctella (Lepidoptera: Pyralidae) has been sequenced. The circular genome is 15 287 bp in size, encoding 13 protein-coding genes (PCGs), 2 rRNA genes, 22 tRNA genes, and a control region. The AT skew of this mt genome is slightly negative, and the nucleotide composition is biased toward A+T nucleotides (80.15%). All PCGs start with the typical ATN (ATA, ATC, ATG, and ATT) codons, except for the cox1 gene which may start with the CGA codon. Four of the 13 PCGs harbor the incomplete termination codon T or TA. All the tRNA genes are folded into the typical clover-leaf structure of mitochondrial tRNA, except for trnS1 (AGN) in which the DHU arm fails to form a stable stem–loop structure. The overlapping sequences are 35 bp in total and are found in seven different locations. A total of 240 bp of intergenic spacers are scattered in 16 regions. The control region of the mt genome is 327 bp in length and consisted of several features common to the sequenced lepidopteran insects. Phylogenetic analysis based on 13 PCGs using the Maximum Likelihood method shows that the placement of P. interpunctella was within the Pyralidae.


BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Yan Cheng ◽  
Xiaoxue He ◽  
S. V. G. N. Priyadarshani ◽  
Yu Wang ◽  
Li Ye ◽  
...  

Abstract Background Suaeda glauca (S. glauca) is a halophyte widely distributed in saline and sandy beaches, with strong saline-alkali tolerance. It is also admired as a landscape plant with high development prospects and scientific research value. The S. glauca chloroplast (cp) genome has recently been reported; however, the mitochondria (mt) genome is still unexplored. Results The mt genome of S. glauca were assembled based on the reads from Pacbio and Illumina sequencing platforms. The circular mt genome of S. glauca has a length of 474,330 bp. The base composition of the S. glauca mt genome showed A (28.00%), T (27.93%), C (21.62%), and G (22.45%). S. glauca mt genome contains 61 genes, including 27 protein-coding genes, 29 tRNA genes, and 5 rRNA genes. The sequence repeats, RNA editing, and gene migration from cp to mt were observed in S. glauca mt genome. Phylogenetic analysis based on the mt genomes of S. glauca and other 28 taxa reflects an exact evolutionary and taxonomic status of S. glauca. Furthermore, the investigation on mt genome characteristics, including genome size, GC contents, genome organization, and gene repeats of S. gulaca genome, was investigated compared to other land plants, indicating the variation of the mt genome in plants. However, the subsequently Ka/Ks analysis revealed that most of the protein-coding genes in mt genome had undergone negative selections, reflecting the importance of those genes in the mt genomes. Conclusions In this study, we reported the mt genome assembly and annotation of a halophytic model plant S. glauca. The subsequent analysis provided us a comprehensive understanding of the S. glauca mt genome, which might facilitate the research on the salt-tolerant plant species.


PeerJ ◽  
2017 ◽  
Vol 5 ◽  
pp. e3148 ◽  
Author(s):  
Ning Ye ◽  
Xuelin Wang ◽  
Juan Li ◽  
Changwei Bi ◽  
Yiqing Xu ◽  
...  

Willow is a widely used dioecious woody plant ofSalicaceaefamily in China. Due to their high biomass yields, willows are promising sources for bioenergy crops. In this study, we assembled the complete mitochondrial (mt) genome sequence ofS. suchowensiswith the length of 644,437 bp using Roche-454 GS FLX Titanium sequencing technologies. Base composition of theS. suchowensismt genome is A (27.43%), T (27.59%), C (22.34%), and G (22.64%), which shows a prevalent GC content with that of other angiosperms. This long circular mt genome encodes 58 unique genes (32 protein-coding genes, 23 tRNA genes and 3 rRNA genes), and 9 of the 32 protein-coding genes contain 17 introns. Through the phylogenetic analysis of 35 species based on 23 protein-coding genes, it is supported thatSalixas a sister toPopulus. With the detailed phylogenetic information and the identification of phylogenetic position, some ribosomal protein genes and succinate dehydrogenase genes are found usually lost during evolution. As a native shrub willow species, this worthwhile research ofS. suchowensismt genome will provide more desirable information for better understanding the genomic breeding and missing pieces of sex determination evolution in the future.


2021 ◽  
Author(s):  
Guo Liangliang ◽  
Shi Yisu ◽  
Wu Mengmeng ◽  
Michael Ackah ◽  
Guo Peng ◽  
...  

Abstract Mulberry is admired for its landscaping and possesses high development prospects and scientific research value. Mitochondria are the plants' powerhouse that produces energy to carry out life processes. In this study, the mt genome of Morus L(M. atropurpurea and M. multicaulis)were annotated and assembled. The circular mt genome of M. multicaulis has a length of 361,546bp, contains 54 genes, including 31 protein-coding genes, 20 tRNA genes, and 3 rRNA genes and composition of A(27.38%), T (27.20%), C (22.63%) and G (22.79%). The sequence repeats, RNA editing gene and migration from cp to mt and was observed in M. multicaulis mt genome. Phylogenetic analysis based on the complete mt genomes of Morus and other 28 species reflects an exact evolutionary and taxonomic status. Furthermore, we investigation on mt genome size, organization, and plastomes at the global level and pi analysis of Morus genome was investigated and compared to other land plants. The results indicate that the exist mt genome's variation in plants. We reported the mt genome assembly and annotation of a halophytic model plant, M. multicaulis, and subsequent analysis, which provided us with a comprehensive understanding of the Morus mt genome.


2018 ◽  
Vol 94 ◽  
Author(s):  
P. Zhang ◽  
R.K. Ran ◽  
A.Y. Abdullahi ◽  
X.L. Shi ◽  
Y. Huang ◽  
...  

AbstractDipetalonema gracile is a common parasite in squirrel monkeys (Saimiri sciureus), which can cause malnutrition and progressive wasting of the host, and lead to death in the case of massive infection. This study aimed to identify a suspected D. gracile worm from a dead squirrel monkey by means of molecular biology, and to amplify its complete mitochondrial genome by polymerase chain reaction (PCR) and sequence analysis. The results identified the worm as D. gracile, and the full length of its complete mitochondrial genome was 13,584 bp, which contained 22 tRNA genes, 12 protein-coding genes, two rRNA genes, one AT-rich region and one small non-coding region. The nucleotide composition included A (16.89%), G (20.19%), T (56.22%) and C (6.70%), among which A + T = 73.11%. The 12 protein-coding genes used TTG and ATT as start codons, and TAG and TAA as stop codons. Among the 22 tRNA genes, only trnS1AGN and trnS2UCN exhibited the TΨC-loop structure, while the other 20 tRNAs showed the TV-loop structure. The rrnL (986 bp) and rrnS (685 bp) genes were single-stranded and conserved in secondary structure. This study has enriched the mitochondrial gene database of Dipetalonema and laid a scientific basis for further study on classification, and genetic and evolutionary relationships of Dipetalonema nematodes.


2017 ◽  
Author(s):  
Gisele Lopes Nunes ◽  
Renato Renison Moreira Oliveira ◽  
Eder Soares Pires ◽  
Santelmo Vasconcelos ◽  
Thadeu Pietrobon ◽  
...  

AbstractWe report the complete mitochondrial genome sequence of Glomeridesmus spelaeus, the first sequenced genome of the order Gomeridesmida. The genome is 14,825 pb in length and encodes 37 mitochondrial (13 PCGs, 2 rRNA genes, 22 tRNA) genes and contains a typical AT-rich region. The base composition of the genome was A (40.1%), T (36.4%), C (15.8%), and G (7.6%), with an AT content of 76.5%. Our results indicated that Glomeridesmus spelaeus only distantly related to the other Diplopoda species with available mitochondrial genomes in the public databases. The publication of the mitogenome of G. spelaeus will contribute to the identification of troglobitic invertebrates, a very significant advance for the conservation of the troglofauna.


PLoS ONE ◽  
2020 ◽  
Vol 15 (11) ◽  
pp. e0242541
Author(s):  
Lvpei Du ◽  
Shanya Cai ◽  
Jun Liu ◽  
Ruoyu Liu ◽  
Haibin Zhang

Phymorhynchus is a genus of deep-sea snails that are most distributed in hydrothermal vent or cold seep environments. In this study, we presented the complete mitochondrial genome of P. buccinoides, a cold seep snail from the South China Sea. It is the first mitochondrial genome of a cold seep member of the superfamily Conoidea. The mitochondrial genome is 15,764 bp in length, and contains 13 protein-coding genes (PCGs), 2 rRNA genes, and 22 tRNA genes. These genes are encoded on the positive strand, except for 8 tRNA genes that are encoded on the negative strand. The start codon ATG and 3 types of stop codons, TAA, TAG and the truncated termination codon T, are used in the 13 PCGs. All 13 PCGs in the 26 species of Conoidea share the same gene order, while several tRNA genes have been translocated. Phylogenetic analysis revealed that P. buccinoides clustered with Typhlosyrinx sp., Eubela sp., and Phymorhynchus sp., forming the Raphitomidae clade, with high support values. Positive selection analysis showed that a residue located in atp6 (18 S) was identified as the positively selected site with high posterior probabilities, suggesting potential adaption to the cold seep environment. Overall, our data will provide a useful resource on the evolutionary adaptation of cold seep snails for future studies.


PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e8450 ◽  
Author(s):  
Sunan Huang ◽  
Xuejun Ge ◽  
Asunción Cano ◽  
Betty Gaby Millán Salazar ◽  
Yunfei Deng

The genus Dicliptera (Justicieae, Acanthaceae) consists of approximately 150 species distributed throughout the tropical and subtropical regions of the world. Newly obtained chloroplast genomes (cp genomes) are reported for five species of Dilciptera (D. acuminata, D. peruviana, D. montana, D. ruiziana and D. mucronata) in this study. These cp genomes have circular structures of 150,689–150,811 bp and exhibit quadripartite organizations made up of a large single copy region (LSC, 82,796–82,919 bp), a small single copy region (SSC, 17,084–17,092 bp), and a pair of inverted repeat regions (IRs, 25,401–25,408 bp). Guanine-Cytosine (GC) content makes up 37.9%–38.0% of the total content. The complete cp genomes contain 114 unique genes, including 80 protein-coding genes, 30 transfer RNA (tRNA) genes, and four ribosomal RNA (rRNA) genes. Comparative analyses of nucleotide variability (Pi) reveal the five most variable regions (trnY-GUA-trnE-UUC, trnG-GCC, psbZ-trnG-GCC, petN-psbM, and rps4-trnL-UUA), which may be used as molecular markers in future taxonomic identification and phylogenetic analyses of Dicliptera. A total of 55-58 simple sequence repeats (SSRs) and 229 long repeats were identified in the cp genomes of the five Dicliptera species. Phylogenetic analysis identified a close relationship between D. ruiziana and D. montana, followed by D. acuminata, D. peruviana, and D. mucronata. Evolutionary analysis of orthologous protein-coding genes within the family Acanthaceae revealed only one gene, ycf15, to be under positive selection, which may contribute to future studies of its adaptive evolution. The completed genomes are useful for future research on species identification, phylogenetic relationships, and the adaptive evolution of the Dicliptera species.


Author(s):  
Tianhong Wang ◽  
Zihao Wang ◽  
Ruwei Bai ◽  
Zhijun Yu ◽  
Jingze Liu

Haemaphysalis qinghaiensis is an endemic species and mainly inhabiting in the northwestern plateau of China, which can transmit many zoonotic pathogens and cause great harm to animals. In this study, the complete mitochondrial genome (mitogenome) of H. qinghaiensis was assembled through the Illumina HiSeq platform. The mitogenome was 14,533 bp in length, consisting of 13 protein-coding genes (PCGs), 22 tRNA genes, 2 rRNA genes and 3 noncoding regions (NCRs). The bias towards a high A+T content with 77.65% in mitogenome of H. qinghaiensis. The rearrangement of mitochondrial genes in H. qinghaiensis was consistent with other hard ticks. The phylogenetic analysis based on the concatenation of 13 PCGs from 65 tick mitogenomes showed that the H. qinghaiensis was clustered into a well-supported clade within the Haemaphysalis genus. This is the first complete mitogenome sequence of H. qinghaiensis, which provides a useful reference for understanding of the taxonomic and genetics of ticks.


Sign in / Sign up

Export Citation Format

Share Document