scholarly journals Monitoring Dangerous Goods in Container Yard Using the Internet of Things

2016 ◽  
Vol 2016 ◽  
pp. 1-12 ◽  
Author(s):  
Lianhong Ding ◽  
Yifan Chen ◽  
Juntao Li

The Internet of Things (IoT), a network of objects, has been regarded as the next revolution for the global information industry after the Internet. With IoT, many intelligent applications can be accomplished or improved. This paper presents a framework for dangerous goods management in container yard using IoT technology. The framework consists of three layers: perceptual layer, transport layer, and application layer. It offers an infrastructure for management and data analysis and utilization. According to the features of dangerous goods, the framework can be enhanced for container information forecast, container gate-in and gate-out management, environment parameters monitoring, and fire control as well. In order to verify our method, a prototype system is developed, which shows good performance. With our method, safe operation of dangerous goods in container yard can be accomplished.

2012 ◽  
Vol 2012 ◽  
pp. 1-11 ◽  
Author(s):  
Federica Paganelli ◽  
David Parlanti

Current trends towards the Future Internet are envisaging the conception of novel services endowed with context-aware and autonomic capabilities to improve end users’ quality of life. The Internet of Things paradigm is expected to contribute towards this ambitious vision by proposing models and mechanisms enabling the creation of networks of “smart things” on a large scale. It is widely recognized that efficient mechanisms for discovering available resources and capabilities are required to realize such vision. The contribution of this work consists in a novel discovery service for the Internet of Things. The proposed solution adopts a peer-to-peer approach for guaranteeing scalability, robustness, and easy maintenance of the overall system. While most existing peer-to-peer discovery services proposed for the IoT support solely exact match queries on a single attribute (i.e., the object identifier), our solution can handle multiattribute and range queries. We defined a layered approach by distinguishing three main aspects: multiattribute indexing, range query support, peer-to-peer routing. We chose to adopt an over-DHT indexing scheme to guarantee ease of design and implementation principles. We report on the implementation of a Proof of Concept in a dangerous goods monitoring scenario, and, finally, we discuss test results for structural properties and query performance evaluation.


2014 ◽  
Vol 644-650 ◽  
pp. 2812-2815 ◽  
Author(s):  
Cui Mei Li ◽  
Rou Wang ◽  
Le Huang

The Internet of Things, which is another revolution in the information industry following the computer and the Internet, is referred to as the third wave of the world information industry. In this paper, the concepts, the architecture system and the principle, and the key technology in the Internet of Things and its application in real life are presented. Finally, a strategic advice on the development of the Internet of Things in China is put forward.


2014 ◽  
Vol 556-562 ◽  
pp. 5321-5327
Author(s):  
Hui Qun Zhao ◽  
Hai Gang Yang

TransactionEvent is one of the five events defined in EPCGlobal standard. As TransactionEvent lasts for a long period and processes large data, it has a higher demand of real-time. The process of the TransactionEvent in the Internet of Things is complex. In order to overcome these disadvantages, this paper proposes a non-integrated program. This program will ensure the TransactionEvent processing efficiency, reliability and real time. In the end of this paper, the article will implement a prototype system of a commercial IoT to verify this method.


2014 ◽  
Vol 1006-1007 ◽  
pp. 534-537 ◽  
Author(s):  
An Wang ◽  
Xiang Qing Zhang

the internet of things, an important part of the new generation information technology, is known as a information industry wave after the computer, internet and mobile communication network, and has been included into the core area of Chinese strategic emerging industry. In view of unceasingly domestic food safety problems, the paper put forward the construction of food safety monitoring system based on internet of things technology, to promote resource-saving, environment-friendly society sustainable development.


Author(s):  
Liangming Cai ◽  
Jingrong Le ◽  
Xuxin Ruan ◽  
Min Du

This paper presents an OSA patient interactive monitoring system based on the Internet of Things (IoT) framework. This system allows OSA patients to get timely rescue when they are sleepy outside. Because the Beidou position marker has an interactive function, it can reduce the anxiety of the patient while waiting for the rescue. At the same time, if a friend helps the OSA patients to call the doctor, the friend can also report the patient's condition in time. This system uses the popular IoT framework. At the bottom is the data acquisition layer, which uses wearable sensors to collect vital signs from patients, with a focus on ECG and SpO2 signals. The middle layer is the network layer that transmits the collected physiological signals to the Beidou indicator using the Bluetooth Low Energy (BLE) protocol. The top layer is the application layer, and the application layer uses the mature rescue interactive platform of Beidou. Since the GPS indicator has not included the communication satellite, So it has no SMS function. OSA patients can only passively wait for a rescue. Moreover, due to the lack of satellites in Asia and the insufficient density of the ground-enhanced system, the positioning error of OSA patients is large. The Beidou system developed by China itself, the main coverage of the satellite is in Asia, and is equipped with a high-density ground-based augmentation system. Therefore, the Beidou model improves the positioning accuracy and is equipped with a special communication satellite, which increases the short message interaction function. Therefore, patients can report disease progression in time while waiting for a rescue. After our simulation test, the effectiveness of the OSA patient rescue monitoring system based on the Internet of Things framework and the positioning accuracy of OSA patients have been greatly improved. Especially when OSA patients work outdoors, the cell phone base station signal coverage is relatively weak. The satellite signal is well covered, plus the SMS function of the Beidou indicator. Therefore, the system can be used to provide timely patient progress and provide data support for the medical rescue team to provide a more accurate rescue plan. After a comparative trial, the rescue rate of OSA patients using the detection device of this system was increased by 15 percentage points compared with the rescue rate using only GPS satellite phones.


The internet of things is turning into an appealing framework worldview to acknowledge inter-connections throughout corporeal, digital as well as communal gaps. Through the connections amid the IoT, safety concerns befall important, along with it is huge to set up improved resolutions for safety protections. The IoT apparition of unlock data sharing is expert through using cloud registering concepts. Since IoT is depends on the web, safety concerns of internet will similarly emerge in IoT as well as IoT enclose three layers for example perception, transportation and application layers. The safety concerns, modernism along with solution recognized by the application layer are conversed about in this Paper. The principle focal point of this examination work is on Data Security Protection procedure for application layer


The fourth industrial revolution represents smarter systems, faster and more optimized system of artificial intelligence, which involves control systems and sensors networks. In this paper, the concept of the Internet of Things (IoT) was applied preliminarily to create the connection between machine and the user, using a sensor, a processor such as Raspberry Pi, and IoT platform application such as Blynk in the smartphone. The simple IR 4.0 prototype system and IoT apps were developed in order to create a connection between sensors and user through the internet consisting of a temperature and humidity sensor, which is DHT11 and a Raspberry Pi 3 Model B. The smartphone application would be developed through the Blynk application for this simple prototype system. The graphical user interface GUI was built within the Blynk app and link it to the sensor which is already connected to the Raspberry Pi. The analysis that was done upon the system is by varying the stimuli to the sensors, which is a hairdryer with three levels of heat and observe the relative change of the reading of temperature and percentage of humidity on the apps. Therefore, the preliminary result shows an increase in temperature as the heat level increases. On the other hand, the percentage of humidity becomes lower as the temperature goes higher. Based on the results and the analysis, it had shown that the IR 4.0 prototype system of IoT monitoring can connect between the sensor and the smartphone application with real-time monitoring through the internet.


2019 ◽  
Vol 9 (2) ◽  
pp. 310
Author(s):  
Xiaowen Chen ◽  
Guanci Yang

Tensioning is an important process for producing prestressed concrete beams and directly affects bridge performance and driving safety. Active sensing and management of tensioning process data can improve the efficiency of quality monitoring and level of prestressed concrete beams. To realize remote collection and quality monitoring of tensioning process data, a framework for data sensing and processing of tensioning system based on the Internet of Things (IoT) is proposed in this study. Firstly, we investigate the technical framework and techniques of the system and designs a work flow of sensing, transport, and application service layers. The architecture of the tensioning system is presented. Then we propose a data acquisition and preprocessing method for the sensing layer, put forwards the data-pushing mechanism of the transport layer, and designs the function and work flow of the application service layer. After that, .NET platform and Android Studio are used to implement the tensioning system based on Browser/Server (B/S) architecture and mobile terminals. Finally, the case results of the system in seven precast beam fields in the Hubei section of Zhengzhou–Wanzhou high-speed Railway are given, which show that the developed system realizes collection, active pushing, and remote monitoring of tensioning process data.


Sign in / Sign up

Export Citation Format

Share Document