scholarly journals Fault Diagnosis System of Induction Motors Based on Multiscale Entropy and Support Vector Machine with Mutual Information Algorithm

2016 ◽  
Vol 2016 ◽  
pp. 1-12 ◽  
Author(s):  
Shuang Pan ◽  
Tian Han ◽  
Andy C. C. Tan ◽  
Tian Ran Lin

An effective fault diagnosis method for induction motors is proposed in this paper to improve the reliability of motors using a combination of entropy feature extraction, mutual information, and support vector machine. Sample entropy and multiscale entropy are used to extract the desired entropy features from motor vibration signals. Sample entropy is used to estimate the complexity of the original time series while multiscale entropy is employed to measure the complexity of time series in different scales. The entropy features are directly extracted from the nonlinear, nonstationary induction motor vibration signals which are then sorted by using mutual information so that the elements in the feature vector are ranked according to their importance and relevant to the faults. The first five most important features are selected from the feature vectors and classified using support vector machine. The proposed method is then employed to analyze the vibration data acquired from a motor fault simulator test rig. The classification results confirm that the proposed method can effectively diagnose various motor faults with reasonable good accuracy. It is also shown that the proposed method can provide an effective and accurate fault diagnosis for various induction motor faults using only vibration data.

2015 ◽  
Vol 10 (4) ◽  
pp. 1558-1565 ◽  
Author(s):  
Don-Ha Hwang ◽  
Young-Woo Youn ◽  
Jong-Ho Sun ◽  
Kyeong-Ho Choi ◽  
Jong-Ho Lee ◽  
...  

Entropy ◽  
2018 ◽  
Vol 20 (8) ◽  
pp. 602 ◽  
Author(s):  
Xiaolong Zhu ◽  
Jinde Zheng ◽  
Haiyang Pan ◽  
Jiahan Bao ◽  
Yifang Zhang

Multiscale entropy (MSE), as a complexity measurement method of time series, has been widely used to extract the fault information hidden in machinery vibration signals. However, the insufficient coarse graining in MSE will result in fault pattern information missing and the sample entropy used in MSE at larger factors will fluctuate heavily. Combining fractal theory and fuzzy entropy, the time shift multiscale fuzzy entropy (TSMFE) is put forward and applied to the complexity analysis of time series for enhancing the performance of MSE. Then TSMFE is used to extract the nonlinear fault features from vibration signals of rolling bearing. By combining TSMFE with the Laplacian support vector machine (LapSVM), which only needs very few marked samples for classification training, a new intelligent fault diagnosis method for rolling bearing is proposed. Also the proposed method is applied to the experiment data analysis of rolling bearing by comparing with the existing methods and the analysis results show that the proposed fault diagnosis method can effectively identify different states of rolling bearing and get the highest recognition rate among the existing methods.


Electronics ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 1496
Author(s):  
Hao Liang ◽  
Yiman Zhu ◽  
Dongyang Zhang ◽  
Le Chang ◽  
Yuming Lu ◽  
...  

In analog circuit, the component parameters have tolerances and the fault component parameters present a wide distribution, which brings obstacle to classification diagnosis. To tackle this problem, this article proposes a soft fault diagnosis method combining the improved barnacles mating optimizer(BMO) algorithm with the support vector machine (SVM) classifier, which can achieve the minimum redundancy and maximum relevance for feature dimension reduction with fuzzy mutual information. To be concrete, first, the improved barnacles mating optimizer algorithm is used to optimize the parameters for learning and classification. We adopt six test functions that are on three data sets from the University of California, Irvine (UCI) machine learning repository to test the performance of SVM classifier with five different optimization algorithms. The results show that the SVM classifier combined with the improved barnacles mating optimizer algorithm is characterized with high accuracy in classification. Second, fuzzy mutual information, enhanced minimum redundancy, and maximum relevance principle are applied to reduce the dimension of the feature vector. Finally, a circuit experiment is carried out to verify that the proposed method can achieve fault classification effectively when the fault parameters are both fixed and distributed. The accuracy of the proposed fault diagnosis method is 92.9% when the fault parameters are distributed, which is 1.8% higher than other classifiers on average. When the fault parameters are fixed, the accuracy rate is 99.07%, which is 0.7% higher than other classifiers on average.


2015 ◽  
Vol 2015 ◽  
pp. 1-6 ◽  
Author(s):  
Jianfeng Zhang ◽  
Mingliang Liu ◽  
Keqi Wang ◽  
Laijun Sun

During the operation process of the high voltage circuit breaker, the changes of vibration signals can reflect the machinery states of the circuit breaker. The extraction of the vibration signal feature will directly influence the accuracy and practicability of fault diagnosis. This paper presents an extraction method based on ensemble empirical mode decomposition (EEMD). Firstly, the original vibration signals are decomposed into a finite number of stationary intrinsic mode functions (IMFs). Secondly, calculating the envelope of each IMF and separating the envelope by equal-time segment and then forming equal-time segment energy entropy to reflect the change of vibration signal are performed. At last, the energy entropies could serve as input vectors of support vector machine (SVM) to identify the working state and fault pattern of the circuit breaker. Practical examples show that this diagnosis approach can identify effectively fault patterns of HV circuit breaker.


Author(s):  
Ashkan Moosavian ◽  
Meghdad Khazaee ◽  
Gholamhassan Najafi ◽  
Majid Khazaee ◽  
Babak Sakhaei ◽  
...  

This paper deals with vibration-fault diagnosis of spark plug of an internal combustion engine using wavelet analysis and support vector machine. In order to reduce the noises of the vibration signals, wavelet denoising technique was used. A performance comparison was made between different mother wavelets as well as different levels of decomposition in order to find the best cases for the system under study. The results showed that the maximum classification accuracies were obtained by 13 different wavelets, namely, db1_4, db1_5, db2_4, db3_4, coif1_4, coif1_5, coif2_4, coif3_3, coif3_4, coif3_5, dmey_2, dmey_4 and bior3.7_6. It was also demonstrated that db1, coif1, coif3 and dmey were valuable mother wavelets for this study. Moreover, the results indicated that the proposed approach can reliably be used for spark plug fault diagnosis.


2013 ◽  
Vol 20 (2) ◽  
pp. 341-349 ◽  
Author(s):  
Cheng-Wei Fei ◽  
Guang-Chen Bai

In order to correctly analyze aeroengine whole-body vibration signals, Wavelet Correlation Feature Scale Entropy (WCFSE) and Fuzzy Support Vector Machine (FSVM) (WCFSE-FSVM) method was proposed by fusing the advantages of the WCFSE method and the FSVM method. The wavelet coefficients were known to be located in high Signal-to-Noise Ratio (S/N or SNR) scales and were obtained by the Wavelet Transform Correlation Filter Method (WTCFM). This method was applied to address the whole-body vibration signals. The WCFSE method was derived from the integration of the information entropy theory and WTCFM, and was applied to extract the WCFSE values of the vibration signals. Among the WCFSE values, theWFSE1andWCFSE2values on the scale 1 and 2 from the high band of vibration signal were believed to acceptably reflect the vibration feature and were selected to construct the eigenvectors of vibration signals as fault samples to establish the WCFSE-FSVM model. This model was applied to aeroengine whole-body vibration fault diagnosis. Through the diagnoses of four vibration fault modes and the comparison of the analysis results by four methods (SVM, FSVM, WESE-SVM, WCFSE-FSVM), it is shown that the WCFSE-FSVM method is characterized by higher learning ability, higher generalization ability and higher anti-noise ability than other methods in aeroengine whole-vibration fault analysis. Meanwhile, this present study provides a useful insight for the vibration fault diagnosis of complex machinery besides an aeroengine.


2020 ◽  
Vol 26 (23-24) ◽  
pp. 2230-2242
Author(s):  
Ying Shi ◽  
Cai Yi ◽  
Jianhui Lin ◽  
Zhe Zhuang ◽  
Senhua Lai

In this article, a fault diagnosis approach for a pantograph is developed with collected vibration data from a test rig. Ensemble empirical mode decomposition is used to decompose the signals to get intrinsic mode function, and four kinds of entropies (permu1tation entropy, approximate entropy, sample entropy, and fuzzy entropy) reflecting the working state are extracted as the inputs of the support vector machine based on particle swarm optimization algorithm support vector machine. The effect of data length, embedded dimension, and other parameters on calculation of the entropy value has also been studied. Multiple feature ranking criteria are used to select the useful features and improve the fault diagnosis accuracy of certain measurement points. Experimental results on pantograph vibration analysis have then confirmed that the proposed method provides an effective measure for pantograph diagnosis.


2011 ◽  
Vol 66-68 ◽  
pp. 1982-1987
Author(s):  
Wei Niu ◽  
Guo Qing Wang ◽  
Zheng Jun Zhai ◽  
Juan Cheng

The vibration signals of rotating machinery in operation consist of plenty of information about its running condition, and extraction and identification of fault signals in the process of speed change are necessary for the fault diagnosis of rotating machinery. This paper improves DDAG classification method and proposes a new fault diagnosis model based on support vector machine to solve the problem of restricting the rotating machinery fault intelligent diagnosis due to the lack of fault data samples. The testing results demonstrate that the model has good classification precision and can correctly diagnose faults.


Author(s):  
Chao Zhang ◽  
Zhongxiao Peng ◽  
Shuai Chen ◽  
Zhixiong Li ◽  
Jianguo Wang

During the operation process of a gearbox, the vibration signals can reflect the dynamic states of the gearbox. The feature extraction of the vibration signal will directly influence the accuracy and effectiveness of fault diagnosis. One major challenge associated with the extraction process is the mode mixing, especially under such circumstance of intensive frequency. A novel fault diagnosis method based on frequency-modulated empirical mode decomposition is proposed in this paper. Firstly, several stationary intrinsic mode functions can be obtained after the initial vibration signal is processed using frequency-modulated empirical mode decomposition method. Using the method, the vibration signal feature can be extracted in unworkable region of the empirical mode decomposition. The method has the ability to separate such close frequency components, which overcomes the major drawback of the conventional methods. Numerical simulation results showed the validity of the developed signal processing method. Secondly, energy entropy was calculated to reflect the changes in vibration signals in relation to faults. At last, the energy distribution could serve as eigenvector of support vector machine to recognize the dynamic state and fault type of the gearbox. The analysis results from the gearbox signals demonstrate the effectiveness and veracity of the diagnosis approach.


Sign in / Sign up

Export Citation Format

Share Document