scholarly journals Stagnation Point Flow of Nanofluid over a Moving Plate with Convective Boundary Condition and Magnetohydrodynamics

2016 ◽  
Vol 2016 ◽  
pp. 1-11 ◽  
Author(s):  
Fazle Mabood ◽  
Nopparat Pochai ◽  
Stanford Shateyi

A theoretical investigation is carried out to examine the effects of volume fraction of nanoparticles, suction/injection, and convective heat and mass transfer parameters on MHD stagnation point flow of water-based nanofluids (Cu and Ag). The governing partial differential equations for the fluid flow, temperature, and concentration are reduced to a system of nonlinear ordinary differential equations. The derived similarity equations and corresponding boundary conditions are solved numerically using Runge-Kutta Fehlberg fourth-fifth order method. To exhibit the effect of the controlling parameters on the dimensionless velocity, temperature, nanoparticle volume fraction, skin friction factor, and local Nusselt and local Sherwood numbers, numerical results are presented in graphical and tabular forms. It is found that the friction factor and heat and mass transfer rates increase with magnetic field and suction/injection parameters.

2013 ◽  
Vol 2013 ◽  
pp. 1-12 ◽  
Author(s):  
Reda G. Abdel-Rahman

An analysis is carried out to study the problem of heat and mass transfer flow over a moving permeable flat stretching sheet in the presence of convective boundary condition, slip, radiation, heat generation/absorption, and first-order chemical reaction. The viscosity of fluid is assumed to vary linearly with temperature. Also the diffusivity is assumed to vary linearly with concentration. The governing partial differential equations have been reduced to the coupled nonlinear ordinary differential equations by using Lie group point of transformations. The system of transformed nonlinear ordinary differential equations is solved numerically using shooting techniques with fourth-order Runge-Kutta integration scheme. Comparison between the existing literature and the present study was carried out and found to be in excellent agreement. The effects of the various interesting parameters on the flow, heat, and mass transfer are analyzed and discussed through graphs in detail. The values of the local Nusselt number, the local skin friction, and the local Sherwood number for different physical parameters are also tabulated.


2015 ◽  
Vol 31 (5) ◽  
pp. 607-616 ◽  
Author(s):  
H. Ali Agha ◽  
M. N. Bouaziz ◽  
S. Hanini

AbstractA numerical analysis was performed to study the effects of combined magnetohydrodynamic and thermal radiation under convective boundary condition over a semi infinite vertical plate embedded in a non-Darcy porous medium. Coupled heat and mass transfer of free convective boundary layer with viscous nanofluid are considered. The model used for the nanofluid includes the effects of Brownian motion and thermophoresis mechanisms, while the Darcy-Forchheimer model is used for the porous medium. The governing partial differential equations are transformed into the ordinary differential equations using the similarity transformations. The accuracy of the method is observed by a comparison with other works reduced to a common case. Many results are tabulated and representative set is displayed graphically to illustrate the influence of the various parameters of interest on different profiles. Extensive numerical investigations show that the flow field, temperature, concentration and nanoparticle volume fraction shapes are significantly influenced by magnetic parameter, regular Lewis number, Brownian motion parameter, thermophoresis parameter, regular buoyancy ratio parameter and Biot number. Heat and mass transfer rates are significantly affected by the level of the applied magnetic field and the convective heat coefficient.


2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Tadesse Walelign ◽  
Eshetu Haile ◽  
Tesfaye Kebede ◽  
Gurju Awgichew

This paper presents a mathematical model analysis of heat and mass transfer in a two-dimensional flow of electrically conducting, thermally radiative, and chemically reactive Maxwell nanofluid towards a vertical stretching and permeable sheet embedded in a porous medium. Boundary layer approximation and suitable transformations are used to reduce the governing differential equations convenient for computation. Eventually, the transformed nonlinear differential equations along with the corresponding boundary conditions are solved in the framework of optimal homotopy analysis method. The effects of induced magnetic field, buoyancy force, viscous dissipation, heat source, Joule heating, and convective boundary condition are analyzed in detail. The rates of heat, mass, and momentum transfer with respect to the relevant parameters are also examined in terms of the local Nusselt number, Sherwood number, and skin friction coefficients, respectively. Among the many results of the study, it is shown that the induced magnetic field, flow velocity, and temperature profiles are increasing functions of the Maxwell parameter. The results of the present study are also in a close agreement with previously published results under common assumptions.


2015 ◽  
Vol 77 (20) ◽  
Author(s):  
Shah Jahan ◽  
Hamzah Sakidin

In this article, we examined the impact of heat transfer on the magnetohydrodynamic (MHD) stagnation point flow of a non-Newtonian power- law fluid with convective boundary condition. By using suitable similarity transformations, coupled nonlinear partial differential equations are transformed to ordinary differential equations. Then solved the resulting equations with Homotopy analysis method.  Interesting flow parameters such as MHD , stagnation parameter  convective parameter  are discussed graphically. Convergence is checked at 20th order of approximation. Numerical values of physical interested parameter such as local Nusselt number are also tabulated.


Author(s):  
Euwing Low ◽  
Syahira Mansur ◽  
Yaan Yee Choy ◽  
Eugene Low

This paper considers the flow and heat transfer characteristics of dusty nanofluid over a moving plate in the presence of magnetohydrodynamic (MHD) with convective boundary condition. Two types of nanofluid namely CuO-water and Al2O3-water permeated with dust particles are considered. The governing partial differential equations are converted into a system of non-linear ordinary differential equations using similarity transformation, then the non-linear ordinary differential equations are solved using shooting method with fourth-fifth order Runge-Kutta Fehlberg method (RKF45). The influence of non-dimensional governing parameters such as velocity ratio parameter, magnetic field parameter, volume fraction of the nanoparticle, volume fraction of the dust particle, mass concentration of the dust particle, fluid particle interaction parameter for velocity, fluid particle interaction parameter for temperature and Biot number on the velocity and temperature profiles for fluid and dust phases of CuO-water and Al2O3-water dusty nanofluids are discussed and presented through graphs. The skin friction coefficient and Nusselt number are discussed and presented in tabular form.


2017 ◽  
Vol 65 (2) ◽  
pp. 155-162 ◽  
Author(s):  
A. Rauf ◽  
S. A. Shehzad ◽  
T. Hayat ◽  
M. A. Meraj ◽  
A. Alsaedi

AbstractIn this article the stagnation point flow of electrically conducting micro nanofluid towards a shrinking sheet, considering a chemical reaction of first order is investigated. Involvement of magnetic field occurs in the momentum equation, whereas the energy and concentrations equations incorporated the influence of thermophoresis and Brownian motion. Convective boundary condition on temperature and zero mass flux condition on concentration are implemented. Partial differential equations are converted into the ordinary ones using suitable variables. The numerical technique is utilized to discuss the results for velocity, microrotation, temperature, and concentration fields.


Sign in / Sign up

Export Citation Format

Share Document