Effect of Thermal Radiation and Velocity Slip on Stagnation Point Flow, Heat and Mass Transfer of Hydromagnetic Nanofluid Due to Stretching Surface with Convective Boundary Condition

2017 ◽  
Vol 6 (4) ◽  
pp. 647-656 ◽  
Author(s):  
MahanteshM. Nandeppanavar ◽  
M. Subhas Abel ◽  
M. C. Kemparaju
2013 ◽  
Vol 2013 ◽  
pp. 1-12 ◽  
Author(s):  
Reda G. Abdel-Rahman

An analysis is carried out to study the problem of heat and mass transfer flow over a moving permeable flat stretching sheet in the presence of convective boundary condition, slip, radiation, heat generation/absorption, and first-order chemical reaction. The viscosity of fluid is assumed to vary linearly with temperature. Also the diffusivity is assumed to vary linearly with concentration. The governing partial differential equations have been reduced to the coupled nonlinear ordinary differential equations by using Lie group point of transformations. The system of transformed nonlinear ordinary differential equations is solved numerically using shooting techniques with fourth-order Runge-Kutta integration scheme. Comparison between the existing literature and the present study was carried out and found to be in excellent agreement. The effects of the various interesting parameters on the flow, heat, and mass transfer are analyzed and discussed through graphs in detail. The values of the local Nusselt number, the local skin friction, and the local Sherwood number for different physical parameters are also tabulated.


2016 ◽  
Vol 2016 ◽  
pp. 1-11 ◽  
Author(s):  
Fazle Mabood ◽  
Nopparat Pochai ◽  
Stanford Shateyi

A theoretical investigation is carried out to examine the effects of volume fraction of nanoparticles, suction/injection, and convective heat and mass transfer parameters on MHD stagnation point flow of water-based nanofluids (Cu and Ag). The governing partial differential equations for the fluid flow, temperature, and concentration are reduced to a system of nonlinear ordinary differential equations. The derived similarity equations and corresponding boundary conditions are solved numerically using Runge-Kutta Fehlberg fourth-fifth order method. To exhibit the effect of the controlling parameters on the dimensionless velocity, temperature, nanoparticle volume fraction, skin friction factor, and local Nusselt and local Sherwood numbers, numerical results are presented in graphical and tabular forms. It is found that the friction factor and heat and mass transfer rates increase with magnetic field and suction/injection parameters.


Author(s):  
S. M. M. EL-Kabeir ◽  
Ali Chamkha ◽  
A. M. Rashad

The thermal-diffusion and diffusion-thermo effects on heat and mass transfer by magnetohydrodynamic (MHD) mixed convection stagnation-point flow of a power-law non-Newtonian fluid towards a stretching surface in the presence of a magnetic field, thermal radiation and homogenous chemical reaction effects have been studied. A suitable set of dimensionless variables is used and similar equations governing the problem are obtained. The resulting equations have the property that they reduce to various special cases previously considered in the literature. An adequate implicit tri-diagonal finite-difference scheme is employed for the numerical solution of the obtained equations. Various comparisons with previously published work are performed and the results are found to be in excellent agreement. Representative results for the velocity, temperature, and concentration profiles as well as the local skin-friction coefficient, the local Nusselt number and the local Sherwood number illustrating the influence of the magnetic parameter, power-law fluid index, mixed convection parameter, concentration to thermal buoyancy ratio, thermal radiation, chemical reaction, and Dufour and Soret numbers are presented and discussed.


2015 ◽  
Vol 127 ◽  
pp. 1315-1322 ◽  
Author(s):  
Manjula Jonnadula ◽  
Padma Polarapu ◽  
Gnaneswara Reddy M ◽  
Venakateswarlu. M

Sign in / Sign up

Export Citation Format

Share Document