scholarly journals γ-Rays Irradiation Induced Structural and Morphological Changes in Copper Nanowires

2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
H. Shehla ◽  
F. T. Thema ◽  
A. Ishaq ◽  
Naveed Zafar Ali ◽  
I. Javed ◽  
...  

This contribution reports on the effect ofγ-irradiations on the structural and morphological properties of copper nanowires (Cu-NWs) within theγdoses varying from 6 to 25 kGy. At 9 kGy, the Cu-NWs started welding, forming perfect X-, V-, II-, and Y-shaped molecular junctions. Further increasing theγdose up to 15 kGy caused the Cu-NWs to fuse and form larger diameter NWs. At the highest dose of 25 kGy, the nanowires converted into a continuous Cu thin film. However, X-ray diffraction (XRD) results showed that the structure of the Cu-NWs remained stable even after converting into a thin film. The formation of the Cuprite (Cu2O) phases was observed at higherγdose. The mechanism of forming welded networks of Cu-NWs and Cu thin films is explained via the short and high energyγ-ray wavelengths which act on Cu-Cu molecular covalent bonds isotropically.

2008 ◽  
Vol 1139 ◽  
Author(s):  
Klaus Martinschitz ◽  
Rostislav Daniel ◽  
Christian Mitterer ◽  
Keckes Jozef

AbstractA new X-ray diffraction technique to determine elastic moduli of polycrystalline thin films deposited on monocrystalline substrates is demonstrated. The technique is based on the combination of sin2ψ and X-ray diffraction wafer curvature techniques which are used to characterize X-ray elastic strains and macroscopic stress in thin film. The strain measurements must be performed for various hkl reflections. The stresses are determined from the substrate curvature applying the Stoney's equation. The stress and strain values are used to calculate hkl reflection dependent X-ray elastic moduli. The mechanical elastic moduli can be then extrapolated from X-ray elastic moduli considering film macroscopic elastic anisotropy. The derived approach shows for which reflection and corresponding value of the X-ray anisotropic factor Γ the X-ray elastic moduli are equal to their mechanical counterparts in the case of fibre textured cubic polycrystalline aggregates. The approach is independent of the crystal elastic anisotropy and depends on the fibre texture type, the texture sharpness, the amount of randomly oriented crystallites and on the supposed grain interaction model. The new method is demonstrated on a fiber textured Cu thin film deposited on monocrystalline Si(100) substrate. The advantage of the new technique remains in the fact that moduli are determined non-destructively, using a static diffraction experiment and represent volume averaged quantities.


1995 ◽  
Vol 396 ◽  
Author(s):  
Setsuo Nakao ◽  
Kazuo Saitoh ◽  
Masami Ikeyama ◽  
Hiroaki Niwa ◽  
Seita Tanemura ◽  
...  

AbstractAmorphous (a-) Ge films were deposited on air-cleaved CaF2 (111) substrates at different deposition temperatures (Td). The films were irradiated with 0.9 MeV Ge or Si ions at low ion current intensity (1c) l00nA/cm2. Their structural changes were studied by Rutherford backscattering spectrometry (RBS) -channeling technique and thin film x-ray diffraction (XRD) measurement. It was found that the films were epitaxially crystallized by Ge and Si ion irradiation although they included randomly oriented grains. Ge ion irradiation was more effective for the crystallization than Si ion irradiation. However, the amount of the randomly oriented grains was slightly higher when using Ge ions. On the other hand, ion irradiation to the films prepared at high Td also exhibited higher incidence of randomly oriented grains.


Author(s):  
Andrea Ambrosini ◽  
Timothy N. Lambert ◽  
Antoine Boubault ◽  
Andrew Hunt ◽  
Danae J. Davis ◽  
...  

Efforts at Sandia National Laboratories are addressing more efficient solar selective coatings for tower applications, based on oxide materials deposited by a variety of methods. Over the course of this investigation, several compositions with optical properties competitive to Pyromark have been identified. These promising coatings were deposited on Inconel 625 and Haynes 230 Ni alloys and isothermally aged in air at temperatures between 600–800 °C for up to 480 hours, concurrently with Pyromark®, which was used as a reference standard. At various heating times, the samples were removed from the furnace and their optical properties (solar-weighted absorptance and emittance) were measured. In addition, x-ray diffraction and scanning electron microscopy were utilized to investigate any structural or morphological changes that occurred over time with heating, in an attempt to correlate with changes in optical properties. At 600 and 700 °C, several of the coatings maintained an absorptivity > 90%. While the chemical makeup of the coating material greatly influences its optical properties, the morphology of the surface also plays in important part. A thermal sprayed coating modified using a novel laser treatment showed improved properties versus the untreated coating, on par with Pyromark™ at 600 °C, with little degradation after 480 hours. The results of aging on the optical, structural, and morphological properties of these novel coatings will be discussed.


2021 ◽  
pp. 3858-3870
Author(s):  
M. F. A. Alias ◽  
H. A. Abdulrahman

In this work, a (CdO)0.94:(In2O3)0.06 film was developed on a glass substrate using Q- switching pulse laser beam (Nd:YAG; wavelength 1064 nm). The quantitative elemental analysis of the (CdO)0.94:(In2O3)0.06 thin film was achieved using energy dispersive X- ray diffraction (EDX). The topological and morphological properties of the deposited thin film were investigated using atomic force microscope (AFM) and field emission scan electron microscopy (FESEM). The I-V characteristic and Hall effect of (CdO)0.94 :(In2O3)0.06 thin films were used  to  study the electrical properties. The gas sensor properties of the film prepared on n-Si were investigated for oxidization and reduction gases.


2014 ◽  
Vol 29 ◽  
pp. 13-21
Author(s):  
S. Triaa ◽  
L. Faghi ◽  
F. Otmane ◽  
F. Kali-Ali ◽  
M. Azzaz

Nanomaterial Cr75Ni25 alloy with a mean crystallite size of 8.3 nm and microstrain of 1.23% after 48h of milling was synthesized by mechanical alloying using a high energy planetary ball milling. The morphological changes and particles size were investigated by scanning electron microscopy and laser diffraction. Magnetic results were measured by Foucault currants, coercive field and residual magnetisation. Structural change during ball milling was evaluated by X-ray diffraction. It was found that the paramagnetic Cr0.8Ni0.2 phase with bcc structure appears for 12 h of milling.


2003 ◽  
Vol 775 ◽  
Author(s):  
Donghai Wang ◽  
David T. Johnson ◽  
Byron F. McCaughey ◽  
J. Eric Hampsey ◽  
Jibao He ◽  
...  

AbstractPalladium nanowires have been electrodeposited into mesoporous silica thin film templates. Palladium continually grows and fills silica mesopores starting from a bottom conductive substrate, providing a ready and efficient route to fabricate a macroscopic palladium nanowire thin films for potentially use in fuel cells, electrodes, sensors, and other applications. X-ray diffraction (XRD) and transmission electron microscopy (TEM) indicate it is possible to create different nanowire morphology such as bundles and swirling mesostructure based on the template pore structure.


2020 ◽  
Vol 38 (4A) ◽  
pp. 491-500
Author(s):  
Abeer F. Al-Attar ◽  
Saad B. H. Farid ◽  
Fadhil A. Hashim

In this work, Yttria (Y2O3) was successfully doped into tetragonal 3mol% yttria stabilized Zirconia (3YSZ) by high energy-mechanical milling to synthesize 8mol% yttria stabilized Zirconia (8YSZ) used as an electrolyte for high temperature solid oxide fuel cells (HT-SOFC). This work aims to evaluate the densification and ionic conductivity of the sintered electrolytes at 1650°C. The bulk density was measured according to ASTM C373-17. The powder morphology and the microstructure of the sintered electrolytes were analyzed via Field Emission Scanning Electron Microscopy (FESEM). The chemical analysis was obtained with Energy-dispersive X-ray spectroscopy (EDS). Also, X-ray diffraction (XRD) was used to obtain structural information of the starting materials and the sintered electrolytes. The ionic conductivity was obtained through electrochemical impedance spectroscopy (EIS) in the air as a function of temperatures at a frequency range of 100(mHz)-100(kHz). It is found that the 3YSZ has a higher density than the 8YSZ. The impedance analysis showed that the ionic conductivity of the prepared 8YSZ at 800°C is0.906 (S.cm) and it was 0.214(S.cm) of the 3YSZ. Besides, 8YSZ has a lower activation energy 0.774(eV) than that of the 3YSZ 0.901(eV). Thus, the prepared 8YSZ can be nominated as an electrolyte for the HT-SOFC.


Sign in / Sign up

Export Citation Format

Share Document