scholarly journals Application of X-Band Wave Radar for Coastal Dynamic Analysis: Case Test of Bagnara Calabra (South Tyrrhenian Sea, Italy)

2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
Michele Punzo ◽  
Chiara Lanciano ◽  
Daniela Tarallo ◽  
Francesco Bianco ◽  
Giuseppe Cavuoto ◽  
...  

Sea state knowledge has a key role in evaluation of coastal erosion, the assessment of vulnerability and potential in coastal zone utilization, and development of numerical models to predict its evolution. X-band radar measurements were conducted to observe the spatial and temporal variation of the sea-state parameters along a 3 km long sandy-gravelly pocket beaches forming a littoral cell on Bagnara Calabra. We produced a sequence of 1000 images of the sea state extending offshore up to 1 mile. The survey has allowed monitoring the coastline, the directional wave spectra, the sea surface current fields, and the significant wave heights and detecting strong rip currents which cause scours around the open inlets and affect the stability of the submerged reef-type breakwaters. The possibility to validate the data acquired with other datasets (e.g., LaMMA Consortium) demonstrates the potential of the X-band radar technology as a monitoring tool to advance the understanding of the linkages between sea conditions, nearshore sediment dynamics, and coastal change. This work proves the possibility to obtain relevant information (e.g., wave number, period, and direction) for evaluation of local erosion phenomena and of morphological changes in the nearshore and surf zone.

2018 ◽  
Vol 10 (3) ◽  
pp. 459 ◽  
Author(s):  
Giovanni Ludeno ◽  
Francesco Raffa ◽  
Francesco Soldovieri ◽  
Francesco Serafino

1999 ◽  
Vol 52 (1) ◽  
pp. 104-118 ◽  
Author(s):  
R. Del Prete ◽  
A. Pezzoli ◽  
G. Pezzoli

The objective of this paper is to illustrate a methodology for the enhancement of meteorological marine forecasts tailored to the needs of navigation. The study consists of two parts: (1) Theoretical background. Introduction to numerical models for weather forecasting used by meteorological centres. A review of the most reliable equations for prediction of intensity and direction of wind and sea state. In particular, reference is made to the tables for wind forecasting developed by R. Mayençon and A. Pezzoli and the equations for prediction of sea state obtained by K. Haselman and D. J. T. Carter in light of the JONSWAP experiment. (2) Practical application. Application of the methodology to a real-world example: a weather forecast elaborated by the Meteohydrological Laboratory at Dipartimento d'Idraulica Trasporti ed Infrastrutture Civili (DITIC) of the Polytechnic of Turin. The forecast was requested by the Consorzio Prada Challenge 2000 as a meteorological support for the training they held in the Tyrrhenian Sea for the next America's Cup series.


Author(s):  
Céline Drouet ◽  
Nicolas Cellier ◽  
Jérémie Raymond ◽  
Denis Martigny

In-service monitoring can help to increase safety of ships especially regarding the fatigue assessment. For this purpose, it is compulsory to know the environmental conditions encountered: wind, but also the full directional wave spectrum. During the EU TULCS project, a full scale measurements campaign has been conducted onboard the CMA-CGM 13200 TEU container ship Rigoletto. She has been instrumented to measure deformation of the ship as well as the sea state encountered during its trip. This paper will focus on the sea state estimation. Three systems have been installed to estimate the sea state encountered by the Rigoletto: An X-band radar from Ocean Waves with WAMOS® system and two altimetric wave radars from RADAC®. Nevertheless, the measured significant wave height can be disturbed by several external elements like bow waves, sprays, sea surface ripples, etc… Furthermore, ship motions are also measured and can provide another estimation of the significant wave height using a specific algorithm developed by DCNS Research for the TULCS project. As all those estimations are inherently different, it is necessary to make a fusion of those data to provide a single estimation (“best estimate”) of the significant wave height. This paper will present the data fusion process developed for TULCS and show some first validation results.


2012 ◽  
Vol 433-440 ◽  
pp. 6054-6059
Author(s):  
Gan Nan Yuan ◽  
Rui Cai Jia ◽  
Yun Tao Dai ◽  
Ying Li

In the radar imaging mechanism different phenomena are present, as a result the radar image is not a direct representation of the sea state. In analyzing radar image spectra, it can be realized that all of these phenomena produce distortions in the wave spectrum. The main effects are more energy for very low frequencies. This work investigates the structure of the sea clutter spectrum, and analysis the low wave number energy influence on determining sea surface current. Then the radar measure current is validated by experiments. By comparing with the in situ data, we know that the radar results reversed by image spectrum without low wave number spectrum have high precision. The low wave number energy influent determining current seriously.


2020 ◽  
Vol 12 (9) ◽  
pp. 855-861
Author(s):  
Felix Rech ◽  
Kai Huang

AbstractFrom the prevention of natural disasters such as landslide and avalanches, to the enhancement of energy efficiencies in chemical and civil engineering industries, understanding the collective dynamics of granular materials is a fundamental question that are closely related to our daily lives. Using a recently developed multi-static radar system operating at 10 GHz (X-band), we explore the possibility of tracking a projectile moving inside a granular medium, focusing on possible sources of uncertainties in the detection and reconstruction processes. On the one hand, particle tracking with continuous-wave radar provides an extremely high temporal resolution. On the other hand, there are still challenges in obtaining tracer trajectories accurately. We show that some of the challenges can be resolved through a correction of the IQ mismatch in the raw signals obtained. Consequently, the tracer trajectories can be obtained with sub-millimeter spatial resolution. Such an advance can not only shed light on radar particle tracking, but also on a wide range of scenarios where issues relevant to IQ mismatch arise.


2020 ◽  
Vol 83 (1) ◽  
Author(s):  
G. Gallotti ◽  
F. Zaniboni ◽  
G. Pagnoni ◽  
C. Romagnoli ◽  
F. Gamberi ◽  
...  

AbstractThe Marsili Seamount (Tyrrhenian Sea, Italy) is the largest submarine volcano in the Mediterranean Sea, located in the middle of the Marsili Basin, facing the Calabrian and Sicilian coasts on its eastern side, and the coasts of Sardinia on the opposite side. It has erupted in historical times, and its summit crest is affected by widespread hydrothermal activity. This study looks at mass failures taking place at different depths on the flanks of the volcano and estimates their associated tsunamigenic potential. Mass failure, tsunami generation, and propagation have been simulated by means of numerical models developed by the Tsunami Research Team of the University of Bologna. In all, we consider five cases. Of these, three scenarios, one regarding a very small detachment and two medium-sized ones (between 2 and 3 km3 failure volume), have been suggested as possible failure occurrences in the published literature on a morphological basis and involve the north-eastern and north-western sectors of the volcano. The two additional cases, one medium-sized and one extreme, intended as a possible worst-case scenario (volume 17.6 km3), affecting the eastern flank. Results indicate that small-volume failures are not able to produce significant tsunamis; medium-size failures can produce tsunamis which dangerously affect the coasts if their detachment occurs in shallow water, i.e., involves the volcano crest; and extreme volume failures have the potential to create disastrous tsunamis. In all the simulations, tsunami waves appear to reach the Aeolian Islands in around 10 min and the coasts of Calabria and Sicily in 20 min. This study highlights that there is a potential for dangerous tsunamis generation from collapses of the Marsili volcano and as a consequence a need to intensify research on its status and stability conditions. More broadly, this investigation should also be extended to the other volcanic seamounts of the Tyrrhenian Sea, since their eruptive style, evolution, and tsunamigenic potential are still poorly known.


2021 ◽  
Author(s):  
Nikita Rusakov ◽  
Georgy Baidakov ◽  
Evgeny Poplavsky ◽  
Yuliya Troitskaya ◽  
Maksim Vdovin

<p>The work is concerned with the study of the breaking surface wave effect on the intensity and spectral characteristics of a scattered radar signal in laboratory conditions.</p><p><span>The experiments were carried out on the reconstructed TSWiWaT wind wave flume of the IAP RAS. The channel is 12 m long, the channel cross-section varies from 0.7 x 0.7 m at the entrance to 0.7 x 0.9 m in the working section at a distance of 9 m. The airflow speed on the axis is 3-35 m/s, which corresponds to the values of the wind speed U</span><sub>10</sub><span> of 11-50 m/s.</span></p><p>The wave characteristics in the flume were measured by an array of three wave gauges positioned in the corners of an equal-side triangle with 2.5 cm side, the data sampling rate was 200 Hz. Such a system gives the opportunity to retrieve 3D frequency-wave number spectra of surface waves.</p><p>The airflow parameters were measured using the profiling method. The velocity profiles were measured in the working section using an S-shaped Pitot tube. Microwave measurements were carried out using an X-band coherent Doppler scatterometer with a wavelength of 3.2 cm with sequential reception of linear polarizations.  The absolute value of the radar cross-section (RCS) on the wavy water surface was determined by comparing the scattered signal with the signal reflected from the calibrator with a known value of the RCS - a metal ball with a diameter of 6 cm. The dimensions of the observation cross-section were 40 cm x 40 cm, the incidence angles were 30°, 40°, 50° for the upwind direction, the distance to the target was 3.15 m.</p><p>Two series of experiments were carried out. In the first case, wind waves on the surface of pure deep water, developing under the action of a fan generated wind, were studied. In the second case, a train of three waves was generated at the beginning of the channel, with the fan turned on, in order to simulate shallow water an inclined plate was placed under water in front of the measurement area. As a result, the breaking waves occurred at a fixed point and at weaker winds compared to the first case.</p><p>As a result, an increase in the scattered signal intensity during artificial wave breaking in the case of weak winds was noted. For strong winds, the effect turned out to be insignificant, despite the increased amplitude of the waves under study. The Doppler spectra analysis is also presented.</p><p>This work was supported by the RFBR projects No. 19-05-00249, 19-05-00366.  </p>


2021 ◽  
Author(s):  
Xavier Sánchez-Artús ◽  
Vicente Gracia ◽  
Manuel Espino Infantes ◽  
Agustín Sánchez-Arcilla Conejo

<p>Operational morphodynamic modelling is becoming an attractive tool for managers to forecast and reduce coastal risks. The development of highly sophisticated numerical models during the last decades has underpinned the simulation of beach morphological evolution due to wave impacts. However, there are still some fundamental aspects, such as the bathymetric uncertainty, that needs to be regularly updated in the modelling chain to avoid a worthless forecast. It is also very well known that the surf zone is the most highly dynamic area although the bathymetry changes between certain limits. In this work, we explore the influence of bathymetric changes in morphodynamic forecasts. XBEACH is used to model the morphological response of a dissipative urban low-lying sandy coastal stretch (Barcelona, Spain) for different forecasted storms to determine the uncertainty bands of predicted coastal erosion and flooding. We consider as benchmarks the results of XBEACH simulations fed with the bathymetric information taken from existing nautical charts. An analysis of the possible beach states of the studied area following the Wright and Short (1984) is later performed to determine a range of topo-bathymetric configurations that will be used to run the model again. These new simulations are used to determine the uncertainty of the erosion and flooding results. The energy content of the storm in terms of intensity and duration uncertainty is also considered in the analysis. The proposed ensemble approach will serve to determine the likelihood of the modelling forecast outputs. Such statistical characterization is aligned with ensemble forecasting in meteo-oceanographic fields and will provide robust information for coastal decision making, for instance when considering proactive rapid deployment measures against a forecasted storm.</p>


Sign in / Sign up

Export Citation Format

Share Document