scholarly journals Silicon Nanowires with MoSxand Pt as Electrocatalysts for Hydrogen Evolution Reaction

2016 ◽  
Vol 2016 ◽  
pp. 1-10 ◽  
Author(s):  
S. H. Hsieh ◽  
S. T. Ho ◽  
W. J. Chen

A convenient method was used for synthesizing Pt-nanoparticle/MoSx/silicon nanowires nanocomposites. Obtained Pt-MoSx/silicon nanowires electrocatalysts were characterized by transmission electron microscopy (TEM). The hydrogen evolution reaction efficiency of the Pt-MoSx/silicon nanowire nanocomposite catalysts was assessed by examining polarization and electrolysis measurements under solar light irradiations. The electrochemical characterizations demonstrate that Pt-MoSx/silicon nanowire electrodes exhibited an excellent catalytic activity for hydrogen evolution reaction in an acidic electrolyte. The hydrogen production capability of Pt-MoSx/silicon nanowires is also comparable toMoSx/silicon nanowires and Pt/silicon nanowires. Electrochemical impedance spectroscopy experiments suggest that the enhanced performance of Pt-MoSx/silicon nanowires can be attributed to the fast electron transfer between Pt-MoSx/silicon nanowire electrodes and electrolyte interfaces.

2019 ◽  
Vol 10 ◽  
pp. 62-70 ◽  
Author(s):  
Yong Li ◽  
Peng Yang ◽  
Bin Wang ◽  
Zhongqing Liu

Bimetallic phosphides have been attracting increasing attention due to their synergistic effect for improving the hydrogen evolution reaction as compared to monometallic phosphides. In this work, NiCoP modified hybrid electrodes were fabricated by a one-step electrodeposition process with TiO2 nanotube arrays (TNAs) as a carrier. X-ray diffraction, transmission electron microscopy, UV–vis diffuse reflection spectroscopy, X-ray photoelectron spectroscopy and scanning transmission electron microscopy/energy-dispersive X-ray spectroscopy were used to characterize the physiochemical properties of the samples. The electrochemical performance was investigated by cyclic voltammetry, linear sweep voltammetry, and electrochemical impedance spectroscopy. We show that after incorporating Co into Ni–P, the resulting Ni x Co y P/TNAs present enhanced electrocatalytic activity due to the improved electron transfer and increased electrochemically active surface area (ECSA). In 0.5 mol L−1 H2SO4 electrolyte, the Ni x Co y P/TNAs (x = 3.84, y = 0.78) demonstrated an ECSA value of 52.1 mF cm−2, which is 3.8 times that of Ni–P/TNAs (13.7 mF cm−2). In a two-electrode system with a Pt sheet as the anode, the Ni x Co y P/TNAs presented a bath voltage of 1.92 V at 100 mA cm−2, which is an improvment of 79% over that of 1.07 V at 10 mA cm−2.


2015 ◽  
Vol 18 (2) ◽  
pp. 095-102 ◽  
Author(s):  
Reza Karimi Shervedani ◽  
Akbar Amini ◽  
Motahareh Karevan

A new and highly rough nickel electrode is fabricated based on in-situ assembling of prickly nickel nanowires, synthesized by electroless deposition method on a layer of nickel freshly preelectrodeposited on copper, constructing Cu-Ni-PNNWs. Then, the fabricated electrode is studied for Hydrogen Evolution Reaction (HER). Surface morphology of the electrodes is characterized by Field Emission Scanning Electron Microscopy (FESEM) and X-ray diffraction (XRD) microanalysis. Kinetics of the HER is studied in 0.5 M H2SO4 on Cu-Ni-PNNWs electrode in comparison with Ni and Cu-Ni electrodes. Evaluation of the electrode activities is carried out by steady-state polarization curves (Tafel plots) and electrochemical impedance spectroscopy (EIS). The results obtained by electrochemical characterizations have shown that the Cu-Ni-PNNWs electrode benefits of high electrocatalytic activity for the HER. The EIS data are approximated using appropriate equivalent circuit model, and values of the model parameters are extracted. Analysis of the EIS results has revealed that the double layer capacitance (Cdl) and exchange current density (j0) of the Cu-Ni-PNNWs electrode are increased by factors of ~ 47 and ~ 19 times, respectively, compared with Cu-Ni. Up to our knowledge, this is the first finding of this type, reporting synthesis and activity of the Cu-Ni-PNNWs electrode for the HER.


2013 ◽  
Vol 78 (4) ◽  
pp. 549-554 ◽  
Author(s):  
Uros Lacnjevac

Composite Ni-MoO2 coatings were prepared and characterized with respect to their possible application as electrocatalysts for the hydrogen evolution reaction (HER) in alkaline solution. The composites were electrodeposited onto Ni meshes from an ammonium chloride Ni solution with suspended MoO2 particles in simulated industrial conditions for production of commercial cathodes. The influence of the concentration of MoO2 particles in the solution and deposition current density on the morphology, chemical and phase composition of obtained coatings was investigated by scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS) and X-ray diffraction (XRD). Catalytic activity for the HER of the coatings was examined by polarization measurements in a 32 wt. % NaOH solution at 90?C and compared to the activity of the commercial De Nora?s cathode (DN). It was shown that the most active Ni-MoO2 coating exhibits better polarization characteristics for the HER than the DN cathode. The mechanism of the HER on the specified Ni-MoO2 coating was investigated in 8 mol dm-3 NaOH at 30?C by means of steady-state polarization measurements and an electrochemical impedance spectroscopy (EIS) method. Based on the theoretical interpretation of the experimental data, rate constants of the three individual steps of the HER were determined and the source of catalytic activity of the coating was elucidated.


Nanoscale ◽  
2018 ◽  
Vol 10 (29) ◽  
pp. 13936-13941 ◽  
Author(s):  
Joonhee Moon ◽  
Uk Sim ◽  
Dong Jin Kim ◽  
Hyo-Yong Ahn ◽  
Junghyun An ◽  
...  

A facile method for the direct synthesis of carbon nanowires (CNWs) on a SiNW electrode using a chemical vapor deposition (CVD) system with copper (Cu) vapor obtained from a floating Cu foil has been developed.


2020 ◽  
Vol 56 (56) ◽  
pp. 7702-7705 ◽  
Author(s):  
Lei Guo ◽  
Xue Bai ◽  
Hui Xue ◽  
Jing Sun ◽  
Tianshan Song ◽  
...  

A 3D hierarchical Bi-doped CoP nanoflowers electrocatalyst is developed based on a MOF self-sacrifice strategy. The 3% Bi/CoP catalyst delivers a current density of 10 mA cm−2 at low overpotentials of 122 mV in alkaline electrolyte and 150 mV in acidic electrolyte.


Crystals ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 356
Author(s):  
Kasimayan Uma ◽  
Elavarasan Muniranthinam ◽  
Siewhui Chong ◽  
Thomas C.-K Yang ◽  
Ja-Hon Lin

This report presents the synthesis of ZnO nanorod/α-Fe2O3 composites by the hydrothermal method with different weight percentages of α-Fe2O3 nanoparticles. The as-synthesized nanorod composites were characterized by different techniques, such as X-ray diffraction (XRD), Fourier transform-infrared (FT-IR), field emission scanning electron microscopy (FE-SEM), electrochemical impedance spectroscopy (EIS), and X-ray photoelectron spectroscopy (XPS). From our results, it was found that the ZnO/α-Fe2O3 (3 wt%) nanorod composites exhibit a higher hydrogen evolution reaction (HER) activity when compared to other composites. The synergetic effect between ZnO and (3 wt%) of α-Fe2O3 nanocomposites resulted in a low onset potential of −125 mV, which can effectively produce more H2 than pure ZnO. The H2 production rate over the composite of ZnO/α-Fe2O3 (3 wt%) clearly shows a significant improvement in the photocatalytic activity in the heterojunction of the ZnO nanorods and α-Fe2O3 nanoparticles on nickel foam.


2018 ◽  
Vol 2 (6) ◽  
pp. 1305-1311 ◽  
Author(s):  
Sangchai Sarawutanukul ◽  
Nutthaphon Phattharasupakun ◽  
Juthaporn Wutthiprom ◽  
Montree Sawangphruk

In this study, a graphene oxide (GO) carbocatalyst was synthesized as a thin film on a 3D Ni foam substrate (GO@Ni) by oxidative chemical vapour deposition (CVD) using methanol and water as precursors.


Sign in / Sign up

Export Citation Format

Share Document