scholarly journals Energy Efficiency of Ultra-Low-Power Bicycle Wireless Sensor Networks Based on a Combination of Power Reduction Techniques

2016 ◽  
Vol 2016 ◽  
pp. 1-21 ◽  
Author(s):  
Sadik Kamel Gharghan ◽  
Rosdiadee Nordin ◽  
Mahamod Ismail

In most wireless sensor network (WSN) applications, the sensor nodes (SNs) are battery powered and the amount of energy consumed by the nodes in the network determines the network lifespan. For future Internet of Things (IoT) applications, reducing energy consumption of SNs has become mandatory. In this paper, an ultra-low-power nRF24L01 wireless protocol is considered for a bicycle WSN. The power consumption of the mobile node on the cycle track was modified by combining adjustable data rate, sleep/wake, and transmission power control (TPC) based on two algorithms. The first algorithm was a TPC-based distance estimation, which adopted a novel hybrid particle swarm optimization-artificial neural network (PSO-ANN) using the received signal strength indicator (RSSI), while the second algorithm was a novel TPC-based accelerometer using inclination angle of the bicycle on the cycle track. Based on the second algorithm, the power consumption of the mobile and master nodes can be improved compared with the first algorithm and constant transmitted power level. In addition, an analytical model is derived to correlate the power consumption and data rate of the mobile node. The results indicate that the power savings based on the two algorithms outperformed the conventional operation (i.e., without power reduction algorithm) by 78%.

Sensors ◽  
2018 ◽  
Vol 18 (10) ◽  
pp. 3450 ◽  
Author(s):  
Haider Jawad ◽  
Rosdiadee Nordin ◽  
Sadik Gharghan ◽  
Aqeel Jawad ◽  
Mahamod Ismail ◽  
...  

The use of wireless sensor networks (WSNs) in modern precision agriculture to monitor climate conditions and to provide agriculturalists with a considerable amount of useful information is currently being widely considered. However, WSNs exhibit several limitations when deployed in real-world applications. One of the challenges faced by WSNs is prolonging the life of sensor nodes. This challenge is the primary motivation for this work, in which we aim to further minimize the energy consumption of a wireless agriculture system (WAS), which includes air temperature, air humidity, and soil moisture. Two power reduction schemes are proposed to decrease the power consumption of the sensor and router nodes. First, a sleep/wake scheme based on duty cycling is presented. Second, the sleep/wake scheme is merged with redundant data about soil moisture, thereby resulting in a new algorithm called sleep/wake on redundant data (SWORD). SWORD can minimize the power consumption and data communication of the sensor node. A 12 V/5 W solar cell is embedded into the WAS to sustain its operation. Results show that the power consumption of the sensor and router nodes is minimized and power savings are improved by the sleep/wake scheme. The power consumption of the sensor and router nodes is improved by 99.48% relative to that in traditional operation when the SWORD algorithm is applied. In addition, data communication in the SWORD algorithm is minimized by 86.45% relative to that in the sleep/wake scheme. The comparison results indicate that the proposed algorithms outperform power reduction techniques proposed in other studies. The average current consumptions of the sensor nodes in the sleep/wake scheme and the SWORD algorithm are 0.731 mA and 0.1 mA, respectively.


Author(s):  
Haiying Huang ◽  
Yayu Hew

This paper presents the implementation and characterization of a low power wireless vibration sensor that can be powered by a flash light. The wireless system consists of two components, namely the wireless sensor node and the wireless interrogation unit. The wireless sensor node includes a wireless strain gauge that consumes around 6 mW, a signal modulation circuit, and a light energy harvesting unit. To achieve ultra-low power consumption, the signal modulation circuit was implemented using a voltage-controlled oscillator (VCO) to convert the strain gauge output to an intermediate frequency (IF) signal, which is then used to alter the impedance of the sensor antenna and thus achieves amplitude modulation of the backscattered antenna signal. A generic solar panel with energy harvesting circuit is used to power the strain sensor node continuously. The wireless interrogation unit transmits the interrogation signal and receives the amplitude modulated antenna backscattering, which can be down-converted to recover the IF signal. In order to measure the strains dynamically, a Phase Lock Loop (PLL) circuit was implemented at the interrogator to track the frequency of the IF signal and provide a signal that is directly proportional to the measured strain. The system features ultra-low power consumption, complete wireless sensing, solar powering, and portability. The application of this low power wireless strain system for vibration measurement is demonstrated and characterized.


2020 ◽  
Vol 3 (4) ◽  
pp. 259-270
Author(s):  
Nhan Chi Nguyen ◽  
Hoang Huy Nguyen ◽  
Tuan Ngoc Pham

This paper presents the design of wireless sensor network (WSN) based on low-power wide area network technology for high-tech agriculture. This WSN allows the farmer to collect data such as air temperature, air humidity, soil moisture. The WSN system consists of components: 02 wireless sensor nodes, 01 gateway, 01 cloud server and smartphone app. This WSN tested for data transmission in two zones: zone 1 (dense urban environments) at a distance of 500m and zone 2 (urban environments - less obstacles) at a distance of 1,500m and 1,700m. The data collected at different times of the day and updated every 15 minutes. The results show that the wireless sensor network system operates stably, data constantly updated to LoRa Server and there was not data packet loss. The power consumption of sensor node and gateway determined in three operating modes: transmitting, receiving, turn-off. This shows the advantages of LoRa technology in the development of wireless sensor network which is the distance of data transmission distance and low power consumption. Besides this WSN also tested in the net house of aquaponics of the Research Center for High-tech Application in Agriculture (RCHAA), University of Science, Vietnam National University-HCM. The results show that the WSN system is working reliably and promising which brings significantly benefits to smart agriculture as aquaponics, clean vegetable farms, aquaculture farms…


Sensors ◽  
2019 ◽  
Vol 19 (8) ◽  
pp. 1800 ◽  
Author(s):  
Oussama Brini ◽  
Dominic Deslandes ◽  
Frederic Nabki

Innovative Internet of Things (IoT) applications with strict performance and energy consumption requirements and where the agile collection of data is paramount are arising. Wireless sensor networks (WSNs) represent a promising solution as they can be easily deployed to sense, process, and forward data. The large number of Sensor Nodes (SNs) composing a WSN are expected to be autonomous, with a node’s lifetime dictated by the battery’s size. As the form factor of the SN is critical in various use cases, minimizing energy consumption while ensuring availability becomes a priority. Moreover, energy harvesting techniques are increasingly considered as a viable solution for building an entirely green SN and prolonging its lifetime. In the process of building a SN and in the absence of a clear and well-rounded methodology, the designer can easily make unfounded and suboptimal decisions about the right hardware components, their configuration, and reliable data communication techniques, such as automatic repeat request (ARQ) and forward error correction (FEC). In this paper, a methodology to design, configure, and deploy a reliable ultra-low power WSNs is proposed. A comprehensive energy model and a realistic path-loss (PL) model of the sensor node are also established. Through estimations and field measurements it is proven that, following the proposed methodology, the designer can thoroughly explore the design space and the make most favorable decisions when choosing commercial off-the-shelf (COTS) components, configuring the node, and deploying a reliable and energy-efficient WSN.


Sign in / Sign up

Export Citation Format

Share Document