scholarly journals Consensus of High-Order Linear Multiagent Systems with Multitype Switching Topologies Based on the Dynamic Dwell Time Approach

2016 ◽  
Vol 2016 ◽  
pp. 1-8
Author(s):  
Yaxiao Zhang ◽  
Yangzhou Chen ◽  
Xiaojun Qu

This paper investigates the consensus problem of high-order continuous-time linear multiagent systems (LMASs) with multitype switching topologies which include both consensusable and unconsensusable communication topologies. A linear transformation is introduced, which equivalently transforms the consensus problem into the stability problem of a corresponding switched system, along with a necessary and sufficient condition to analyze the consensus problem. This paper is aimed at studying the impact of a switching rule on communication topologies for consensus of LMASs. Based on the dynamic dwell time method, a sufficient condition is derived for consensus of LMASs. It is shown that, with switching signals that satisfy this switching rule, LMASs can achieve consensus under directed switching communication topologies. A numerical example is provided to illustrate the effectiveness of the theoretical results.

2012 ◽  
Vol 2012 ◽  
pp. 1-9 ◽  
Author(s):  
Wei Zhu

The consensus problem for discrete time second-order multiagent systems with time delay is studied. Some effective methods are presented to deal with consensus problems in discrete time multiagent systems. A necessary and sufficient condition is established to ensure consensus. The convergence rate for reaching consensus is also estimated. It is shown that arbitrary bounded time delay can safely be tolerated. An example is presented to illustrate the theoretical result.


2017 ◽  
Vol 2017 ◽  
pp. 1-7 ◽  
Author(s):  
Shiyun Shen ◽  
Wenjing Li ◽  
Wei Zhu

Due to the complexity of the practical environments, many systems can only be described with the fractional-order dynamics. In this paper, the consensus of fractional-order multiagent systems with double integrator under switching topologies is investigated. By applying Mittag-Leffler function, Laplace transform, and dwell time technique, a sufficient condition on consensus is obtained. Finally, a numerical simulation is presented to illustrate the effectiveness of the theoretical result.


1989 ◽  
Vol 12 (4) ◽  
pp. 571-585
Author(s):  
E. Fachini ◽  
A. Maggiolo Schettini ◽  
G. Resta ◽  
D. Sangiorgi

We prove that the classes of languages accepted by systolic automata over t-ary trees (t-STA) are always either equal or incomparable if one varies t. We introduce systolic tree automata with base (T(b)-STA), a subclass of STA with interesting properties of modularity, and we give a necessary and sufficient condition for the equivalence between a T(b)-STA and a t-STA, for a given base b. Finally, we show that the stability problem for T(b)-ST A is decidible.


2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
Zhi-Wei Liu ◽  
Zhi-Hong Guan ◽  
Hong Zhou

This paper studied the consensus problem of the leader-following multiagent system. It is assumed that the state information of the leader is only available to a subset of followers, while the communication among agents occurs at sampling instant. To achieve leader-following consensus, a class of distributed impulsive control based on sampling information is proposed. By using the stability theory of impulsive systems, algebraic graph theory, and stochastic matrices theory, a necessary and sufficient condition for fixed topology and sufficient condition for switching topology are obtained to guarantee the leader-following consensus of the multiagent system. It is found that leader-following consensus is critically dependent on the sampling period, control gains, and interaction graph. Finally, two numerical examples are given to illustrate the effectiveness of the proposed approach and the correctness of theoretical analysis.


2020 ◽  
Vol 30 (07) ◽  
pp. 2050095 ◽  
Author(s):  
Hamid Garmani ◽  
Driss Ait Omar ◽  
Mohamed El Amrani ◽  
Mohamed Baslam ◽  
Mostafa Jourhmane

This paper investigates the dynamical behaviors of a duopoly model with two content providers (CPs). Competition between two CPs is assumed to take place in terms of their pricing decisions and the credibility of content they offer. According to the CPs’ rationality level, we consider a scenario where both CPs are bounded rational. Each CP in any period uses the marginal profit observed from the previous period to choose its strategies. We compute explicitly the steady states of the dynamical system induced by bounded rationality, and establish a necessary and sufficient condition for stability of its Nash equilibrium (NE). Numerical simulations show that if some parameters of the model are varied, the stability of the NE point is lost and the complex (periodic or chaotic) behavior occurs. The chaotic behavior of the system is stabilized on the NE point by applying control.


2020 ◽  
Vol 34 (23) ◽  
pp. 2050240
Author(s):  
Xiao-Wen Zhao ◽  
Guangsong Han ◽  
Qiang Lai ◽  
Dandan Yue

The multiconsensus problem of first-order multiagent systems with directed topologies is studied. A novel consensus problem is introduced in multiagent systems — multiconsensus. The states of multiple agents in each subnetwork asymptotically converge to an individual consistent value in the presence of information exchanges among subnetworks. Linear multiconsensus protocols are proposed to solve the multiconsensus problem, and the matrix corresponding to the protocol is designed. Necessary and sufficient conditions are derived based on matrix theory, under which the stationary multiconsensus and dynamic multiconsensus can be reached. Simulations are provided to demonstrate the effectiveness of the theoretical results.


2014 ◽  
Vol 2014 ◽  
pp. 1-11 ◽  
Author(s):  
Niu Jie ◽  
Li Zhong

This paper studies the sampled-data based consensus of multiagent system with general linear time-invariant dynamics. It focuses on looking for a maximum allowable sampling period bound such that as long as the sampling period is less than this bound, there always exist linear consensus protocols solving the consensus problem. Both fixed and randomly switching topologies are considered. For systems under fixed topology, a necessary and sufficient sampling period bound is obtained for single-input multiagent systems, and a sufficient allowable bound is proposed for multi-input systems by solving theH∞optimal control problem of certain system with uncertainty. For systems under randomly switching topologies, tree-type and complete broadcasting network with Bernoulli packet losses are discussed, and explicit allowable sampling period bounds are, respectively, given based on the unstable eigenvalues of agent’s system matrix and packet loss probability. Numerical examples are given to illustrate the results.


Sign in / Sign up

Export Citation Format

Share Document