scholarly journals Effects of Implementing Adaptable Channelization in Wi-Fi Networks

2016 ◽  
Vol 2016 ◽  
pp. 1-15 ◽  
Author(s):  
Abid Hussain ◽  
Nazar Abbas Saqib

The unprecedented increase of wireless devices is now facing a serious threat of spectrum scarcity. The situation becomes even worse due to inefficient frequency distribution protocols, deployed in trivial Wi-Fi networks. The primary source of this inefficiency is static channelization used in wireless networks. In this work, we investigate the use of dynamic and flexible channelization, for optimal spectrum utilization in Wi-Fi networks. We propose optimal spectrum sharing algorithm (OSSA) and analyze its effect on exhaustive list of essential network performance measuring parameters. The elementary concept of the proposed algorithm lies in the fact that frequency spectrum should be assigned to any access point (AP) based on its current requirement. The OSSA algorithm assigns channels with high granularity, thus maximizing spectrum utilization by more than 20% as compared to static width channel allocation. This optimum spectrum utilization, in turn, increases throughput by almost 30% in many deployment scenarios. The achieved results depict considerable decrease in interference, while simultaneously increasing range. Similarly signal strength values at relatively longer distances improve significantly at narrower channel widths while simultaneously decreasing bit error rates. We found that almost 25% reduction in interference is possible in certain scenarios through proposed algorithm.

Author(s):  
Usama Mir ◽  
Leila Merghem-Boulahia ◽  
Dominique Gaïti

In modern day wireless networks, spectrum utilization and allocation are static. Generally, static spectrum allocation is not a feasible solution considering the distributed nature of wireless devices, thus some alternatives must be ensured in order to allocate spectrum dynamically and to mitigate the current spectrum scarcity. An effective solution to this problem is cognitive radio (CR), which seeks the empty spectrum portions and shares them with the neighboring devices. The CR devices can utilize the available spectrum more efficiently if they try to work together. Therefore, in this work, we review a number of dynamic spectrum allocation techniques, especially those using multiagent systems and game-theoretical approaches, and investigate their applicability to CR networks. The distributed nature of these two domains makes them suitable for CR networks. In fact, the idea of dynamic spectrum sharing using these techniques is not entirely new and several interesting approaches already exist in literature. Thus, in our study we try to focus on existing spectrum sharing literature and cooperative multiagent system for CR networks. We are particularly interested in showing how the distributed nature of multiagent system can be combined with cognitive radios in order to alleviate the current static spectrum usage as well as maintaining cooperation amongst the CR nodes. Moreover, our work includes the description of various scenarios in which spectrum sharing is an essential factor and hence must be performed in a dynamic and opportunistic manner. We also explain the working of our proposed spectrum allocation approach using multiagent system cooperation in one of these scenarios and verify its formal behavior using Petri net modeling.


Info ◽  
2014 ◽  
Vol 16 (5) ◽  
pp. 19-31 ◽  
Author(s):  
Jan Kruys ◽  
Peter Anker ◽  
Roel Schiphorst

Purpose – The purpose of this paper is to propose technology-independent metrics for measuring spectrum utilization efficiency and spectrum sharing which could prove useful in spectrum management. Radio spectrum is considered a scarce resource. The rapid rise in all kinds of wireless devices emphasizes the need for spectrum usage efficiency and spectrum sharing. Notably in license exempt spectrum, the increased density of radio devices requires new methods of evaluating their performance. Design/methodology/approach – The authors go back to the fundamentals of spectrum utilization and show that under high usage conditions, wireless network performance is interference limited. The impact of interference depends both on the environment and on the type of modulation used. The authors use these factors to derive the above metrics. Findings – The main findings of this work are metrics for spectrum utilization and sharing that are technology-independent and therefore widely applicable, notably to license exempt spectrum. These metrics provide increased visibility of receiver performance in determining spectrum use. The authors also find that the capacity of a wireless network is for all practical purposes unlimited – provided the appropriate choices of the technical parameters are made, recognizing the impact of the propagation environment. Research limitations/implications – Because the authors proceed from simplifying assumptions, detailed analysis and prediction of spectrum-sharing cases may require additional parameters to be added to the equations given. Practical implications – The results of this work have potential application in spectrum management and in the development of regulatory requirements for license exempt spectrum. Originality/value – New in this paper is the derivation of spectrum utilization and sharing metrics from first principles that allow different technologies to be compared. The authors also show that, given the right choice of technical parameters, the capacity of wireless networks is practically unlimited.


2018 ◽  
Vol 6 (3) ◽  
pp. 13-19
Author(s):  
Isam Aameer Ibrahim ◽  
Haider TH Salim ◽  
Hasan F. Khazaal

One of the major global issues today is energy consumption. Consequently, power management was introduced in various communication technologies. For IEEE 802.11wireless communication, there is a Power Saving Mode scheme (PSM) for increase the battery life of cell phone. In this PSM, there are two key parameters: beacon period interval (BI) and listen interval(LI). In most work these values are chosen arbitrary. Here, a scheme to determine the optimal BI and LI for accomplishing the most astounding conceivable vitality proficiency is introduced. This is implemented with the application of a numerical sample to the standard IEEE 802.11 PSM and Access Point-PSM (AP-PSM) schemes. To ensure the quality of network performance analysis on the normal and change of parcel delays is doing. The well-known queuing (M/G/I) model with bulk services are utilized. After the implementation of the proposed analysis, “maximum rest plan time ratio optimal Sleep Scheme (OSS)” which is when participate stations stay in the doze mode it can be determined. In this research shows that the optimal BI and LI produce optimal OSS time ratio scheme also achieved optimal average and variance of packet delay.


Sensors ◽  
2021 ◽  
Vol 21 (8) ◽  
pp. 2681
Author(s):  
Kedir Mamo Besher ◽  
Juan Ivan Nieto-Hipolito ◽  
Raymundo Buenrostro-Mariscal ◽  
Mohammed Zamshed Ali

With constantly increasing demand in connected society Internet of Things (IoT) network is frequently becoming congested. IoT sensor devices lose more power while transmitting data through congested IoT networks. Currently, in most scenarios, the distributed IoT devices in use have no effective spectrum based power management, and have no guarantee of a long term battery life while transmitting data through congested IoT networks. This puts user information at risk, which could lead to loss of important information in communication. In this paper, we studied the extra power consumed due to retransmission of IoT data packet and bad communication channel management in a congested IoT network. We propose a spectrum based power management solution that scans channel conditions when needed and utilizes the lowest congested channel for IoT packet routing. It also effectively measured power consumed in idle, connected, paging and synchronization status of a standard IoT device in a congested IoT network. In our proposed solution, a Freescale Freedom Development Board (FREDEVPLA) is used for managing channel related parameters. While supervising the congestion level and coordinating channel allocation at the FREDEVPLA level, our system configures MAC and Physical layer of IoT devices such that it provides the outstanding power utilization based on the operating network in connected mode compared to the basic IoT standard. A model has been set up and tested using freescale launchpads. Test data show that battery life of IoT devices using proposed spectrum based power management increases by at least 30% more than non-spectrum based power management methods embedded within IoT devices itself. Finally, we compared our results with the basic IoT standard, IEEE802.15.4. Furthermore, the proposed system saves lot of memory for IoT devices, improves overall IoT network performance, and above all, decrease the risk of losing data packets in communication. The detail analysis in this paper also opens up multiple avenues for further research in future use of channel scanning by FREDEVPLA board.


Sensors ◽  
2018 ◽  
Vol 18 (8) ◽  
pp. 2548 ◽  
Author(s):  
Run Tian ◽  
Lin Ma ◽  
Zhe Wang ◽  
Xuezhi Tan

This paper considers interference management and capacity improvement for Internet of Things (IoT) oriented two-tier networks by exploiting cognition between network tiers with interference alignment (IA). More specifically, we target our efforts on the next generation two-tier networks, where a tier of femtocell serving multiple IoT devices shares the licensed spectrum with a tier of pre-existing macrocell via a cognitive radio. Aiming to manage the cross-tier interference caused by cognitive spectrum sharing as well as ensure an optimal capacity of the femtocell, two novel self-organizing cognitive IA schemes are proposed. First, we propose an interference nulling based cognitive IA scheme. In such a scheme, both co-tier and cross-tier interferences are aligned into the orthogonal subspace at each IoT receiver, which means all the interference can be perfectly eliminated without causing any performance degradation on the macrocell. However, it is known that the interference nulling based IA algorithm achieves its optimum only in high signal to noise ratio (SNR) scenarios, where the noise power is negligible. Consequently, when the imposed interference-free constraint on the femtocell can be relaxed, we also present a partial cognitive IA scheme that further enhances the network performance under a low and intermediate SNR. Additionally, the feasibility conditions and capacity analyses of the proposed schemes are provided. Both theoretical and numerical results demonstrate that the proposed cognitive IA schemes outperform the traditional orthogonal precoding methods in terms of network capacity, while preserving for macrocell users the desired quality of service.


Author(s):  
Hengameh Keshavarz

The main challenge in operating cognitive ad-hoc networks is the lack of a centralized controller performing resource allocation for different users in the network. In this chapter, a distributed power allocation scheme is considered for secondary users and its performance is analyzed when time average channel gains are substituted for instantaneous channel gains. In this way, it is not necessary to exchange channel information; however, users’ allocated power will be perturbed. It is of interest to analyze mathematically this perturbation and to show how it affects the network performance. In particular, an upper bound on perturbation of each user’s allocated power is obtained. Then, it is shown that how this perturbation affects throughput and the interference constraint for the secondary network.


Author(s):  
Felix Juraschek ◽  
Mesut Günes ◽  
Bastian Blywis

DES-Chan is a framework for experimentally driven research on distributed channel assignment algorithms in wireless mesh networks. DES-Chan eases the development process by providing a set of common services required by distributed channel assignment algorithms. A new challenge for channel assignment algorithms are sources of external interferences. With the increasing number of wireless devices in the unlicensed radio spectrum, co-located devices that share the same radio channel may have a severe impact on the network performance. DES-Chan provides a sensing component to detect such external devices and predict their future activity. As a proof of concept, the authors present a reference implementation of a distributed greedy channel assignment algorithm. The authors evaluate its performance in the DES-Testbed, a multi-transceiver wireless mesh network with 128 nodes at the Freie Universität Berlin.


2019 ◽  
Vol 2019 ◽  
pp. 1-10 ◽  
Author(s):  
Qian Lu ◽  
Haipeng Qu ◽  
Yuzhan Ouyang ◽  
Jiahui Zhang

In general, the IEEE 802.11 network identifiers used by wireless access points (APs) can be easily spoofed. Accordingly, a malicious adversary is able to clone the identity information of a legitimate AP (LAP) to launch evil twin attacks (ETAs). The evil twin is a class of rogue access point (RAP) that masquerades as a LAP and allures Wi-Fi victims’ traffic. It enables an attacker with little effort and expenditure to eavesdrop or manipulate wireless communications. Due to the characteristics of strong concealment, high confusion, great harmfulness, and easy implementation, the ETA has become one of the most severe security threats in Wireless Local Area Networks (WLANs). Here, we propose a novel client-side approach, Speical Length Frames Arrival Time (SLFAT), to detect the ETA, which utilizes the same gateway as the LAP. By monitoring the traffic emitted by target APs at a detection node, SLFAT extracts the arrival time of the special frames with the same length to determine the evil twin’s forwarding behavior. SLFAT is passive, lightweight, efficient, hard to be escaped. It allows users to independently detect ETA on ordinary wireless devices. Through implementation and evaluation in our study, SLFAT achieves a very high detection rate in distinguishing evil twins from LAPs.


IEEE Access ◽  
2016 ◽  
Vol 4 ◽  
pp. 980-992 ◽  
Author(s):  
Najam Ul Hasan ◽  
Waleed Ejaz ◽  
Naveed Ejaz ◽  
Hyung Seok Kim ◽  
Alagan Anpalagan ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document