scholarly journals The Hysteresis Performance and Restoring Force Model for Corroded Reinforced Concrete Frame Columns

2016 ◽  
Vol 2016 ◽  
pp. 1-19 ◽  
Author(s):  
Guifeng Zhao ◽  
Meng Zhang ◽  
Yaoliang Li ◽  
Dawang Li

A numerical simulation of the hysteresis performance of corroded reinforced concrete (RC) frame columns was conducted. Moreover, the results obtained were compared with experimental data. On this basis, a degenerated three-linearity (D-TRI) restoring force model was established which could reflect the hysteresis performance of corroded RC frame columns through theoretical analysis and data fitting. Results indicated that the hysteretic bearing capacity of frame columns decreased significantly due to corrosion of the rebar. In view of the characteristics of the hysteresis curve, the plumpness of the hysteresis loop for frame columns decreased and shrinkage increased with increasing rebar corrosion. All these illustrated that the seismic energy dissipation performance of frame columns reduced but their brittleness increased. As for the features of the skeleton curve, the trends for corroded and noncorroded members were basically consistent and roughly corresponded to the features of a trilinear equivalent model. Thereby, the existing Clough hysteresis rule can be used to establish the restoring force model applicable to corroded RC frame columns based on that of the noncorroded RC members. The calculated skeleton curve and hysteresis curve of corroded RC frame columns using the D-TRI model are closer to the experimental results.

2020 ◽  
Vol 2020 ◽  
pp. 1-15
Author(s):  
Chen Cao ◽  
Shan-suo Zheng ◽  
Wei-bing Hu ◽  
Li-guo Dong ◽  
Xiao-rui Liu

The study aims to research the influence of salt fog corrosion cycles on seismic performance of reinforced concrete (RC) frame beam-column joints in coastal atmosphere. Based on low cyclic loading tests of six RC frame beam-column joint specimens, this study analyses the failure patterns, hysteresis loops, load carrying capacity, displacement, backbone curves, and energy dissipation capacity of corrosion-damaged RC frame beam-column joints. The effect of salt fog corrosion cycles and axial compression ratios are tested repeatedly. The results show that with the same level of axial compression of the frame joint specimens, as the increase of salt fog cycles, the strength, ductility, energy dissipation, bearing capacity, and deformation capacity of joints degenerated to different degrees. When the corrosion level is the same, the stiffness degradation appeared to be more apparent as the increase of axial compression ratio. Then, the behavior degeneration rule of the RC frame beam-column joints is analyzed and formed according to the results of the test; the degeneration restoring force models of corroded RC frame beam-column joints is formed and verified based on Clough’s three-line degenerate restoring force model and the introduction to cyclic degeneration index. The results show that the restoring force model can better describe the hysteresis characteristics of the beam-column joints of corroded RC frames. The research is a theoretical reference for the seismic analysis of the RC frame structure affected by coastal atmospheric environment.


2018 ◽  
Vol 9 (1) ◽  
pp. 103 ◽  
Author(s):  
Bin Wang ◽  
Weizeng Huang ◽  
Shansuo Zheng

In order to study the restoring force characteristics of corroded steel frame beams in an acidic atmosphere, based on different corrosion damage degrees, tests on the material properties of 48 steel samples and six steel frame beam specimens with a scale ratio of 1/2 under low cyclic repeated loading were conducted. According to the test results, the relationship between the weight loss rate and the mechanical properties of corrosion damage steel was obtained by numerical regression analysis, and the hysteresis curves and skeleton curves of the corroded steel frame beams were also obtained. The simplified trilinear skeleton curve model of the corroded steel frame beams and the expression of the corresponding feature points were determined by analyzing the failure process. The strength and stiffness degradation rule of the steel frame beam was analyzed furtherly. The hysteresis rule was established by introducing the cyclic degradation index which considers the effect of different corrosion degrees, and finally the restoring force model based on the corroded steel frame beams in an acidic atmospheric environment was established. Comparison with the test results show that the skeleton curve and the restoring force model established in this paper can accurately describe the seismic performance of corrosion damaged steel frame beams and can provide a basis for the seismic calculation analysis of corroded steel structures in an acidic atmosphere.


2020 ◽  
Vol 2020 ◽  
pp. 1-18
Author(s):  
Yanhua Wang ◽  
Yan Feng ◽  
Dongsheng Huang ◽  
Zirui Huang ◽  
Zhongfan Chen

In this paper, a restoring force model, composed of a trilinear skeleton curve and hysteretic rules, is proposed based on nine pseudostatic tests of the energy-dissipation joint under horizontal low cyclic loading. The critical points of the simplified skeleton curve are obtained via theoretical derivation and FE simulation. The hysteretic rules for the joints are simplified as a concave hexagon, where the parameters of the critical points are optimized by the genetic algorithm (GA). Using the established trilinear skeleton curve, three different working stages, i.e., elastic, hardening, and softening, were divided by the critical points and the moment stiffness of three stages can be calculated. The proposed hysteretic rules of each stage can reveal and explain the “pinching” in the cyclic loading, which make it easier to understand the mechanism of the energy-dissipation joint. The comparison between the restoring force model and the tests shows that the simplified skeleton curves, the established hysteretic rules, and the ductility and the damping ratio are consistent with the experimental results. Finally, the effectiveness of the established restoring force model is verified.


2011 ◽  
Vol 250-253 ◽  
pp. 2749-2753
Author(s):  
Ling Xin Zhang ◽  
Ping Chuan Wu ◽  
Gui Hong Ni

The study on the hysteretic characteristics of steel reinforced concrete (SRC) members is the basis of nonlinear seismic analysis of such structures. So in this paper, by summarizing the hysteretic features of SRC members, a quadrant-linear restoring-force model is suggested. Then the model is verified with available experimental results and proved to be effective and reliable.


2021 ◽  
pp. 1-11
Author(s):  
Jinchao Liu

BACKGROUND: The analysis of seismic stability of structure is important in the field of engineering. OBJECTIVE: This study aims to verify the reliability of numerical simulation in seismic stability of reinforced concrete (RC) frame structure. METHODS: Based on the numerical simulation, the material constitutive model of RC frame structure was introduced and then a finite element model was established through ABAQUS to analyze its seismic stability. RESULTS: The simulation results of ABAQUS were similar to the test values, the tangent slope of the skeleton curve of the structure decreased gradually, the interstorey displacement of storey 1 was the largest, the maximum error of the interstorey displacement angle was 0.005, and the ductility coefficient was 4. CONCLUSIONS: The experimental results verify the reliability of the numerical simulation method and provide some theoretical support for its better application in the study of seismic stability.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Yan Dai ◽  
Shaofeng Nie ◽  
Tianhua Zhou ◽  
Yichun Xu ◽  
Jingrong Peng

In this paper, two joints of circular tubed steel-reinforced concrete (CTSRC) column were designed. The load-displacement hysteretic curve and skeleton curve of this new type of joint are obtained by the pseudostatic test under low cycle cyclic load on the top of the column. The results show that this new type of joint has good seismic energy dissipation performance. On the basis of the test, a three-fold skeleton curve model considering three characteristic points of yield, limit, and failure is proposed, and the expression of skeleton curve model is given. The load and unload stiffness degradation law of specimens under reciprocating load is studied, and the expression of stiffness degradation law is given. The hysteresis law of the new type joint specimens is described in detail. The validity of the model is verified by comparing the experimental curve with the model curve. The model can be used in the elastic-plastic seismic time-history analysis on the joint of circular tubed steel-reinforced concrete (CTSRC) column.


2012 ◽  
Vol 256-259 ◽  
pp. 693-696
Author(s):  
Peng Li ◽  
Ya Ping Peng ◽  
Er Lei Yao

In order to evaluate the seismic performance of reinforced concrete (RC) frames retrofitted by FRP, the experiment of RC frames retrofitted at joints by FRP was carried out. The enhancement in seismic performance of the retrofitted frames is evaluated in hysteretic performance, bearing capacity, stiffness degradation and energy dissipation. And the strengthening effect of the frame retrofitted by CFRP and C/GFRP was compared in the experiment. The restoring force model of RC frame joints retrofitted with FRP was proposed and ranges of the characteristic parameters were determined. The equation of restoring force model for joints strengthened by C/GFRP was suggested. The result show that seismic performance of RC frame retrofitted by FRP based on joints can be improved remarkably. The restoring force model which proposed can be used in seismic elasto-plastic analysis of RC frame structure retrofitted by FRP and practical engineering seismic retrofitting design by FRP.


Sign in / Sign up

Export Citation Format

Share Document