scholarly journals Study on Restoring Force Performance of Corrosion Damage Steel Frame Beams under Acid Atmosphere

2018 ◽  
Vol 9 (1) ◽  
pp. 103 ◽  
Author(s):  
Bin Wang ◽  
Weizeng Huang ◽  
Shansuo Zheng

In order to study the restoring force characteristics of corroded steel frame beams in an acidic atmosphere, based on different corrosion damage degrees, tests on the material properties of 48 steel samples and six steel frame beam specimens with a scale ratio of 1/2 under low cyclic repeated loading were conducted. According to the test results, the relationship between the weight loss rate and the mechanical properties of corrosion damage steel was obtained by numerical regression analysis, and the hysteresis curves and skeleton curves of the corroded steel frame beams were also obtained. The simplified trilinear skeleton curve model of the corroded steel frame beams and the expression of the corresponding feature points were determined by analyzing the failure process. The strength and stiffness degradation rule of the steel frame beam was analyzed furtherly. The hysteresis rule was established by introducing the cyclic degradation index which considers the effect of different corrosion degrees, and finally the restoring force model based on the corroded steel frame beams in an acidic atmospheric environment was established. Comparison with the test results show that the skeleton curve and the restoring force model established in this paper can accurately describe the seismic performance of corrosion damaged steel frame beams and can provide a basis for the seismic calculation analysis of corroded steel structures in an acidic atmosphere.

2020 ◽  
Vol 2020 ◽  
pp. 1-18
Author(s):  
Yanhua Wang ◽  
Yan Feng ◽  
Dongsheng Huang ◽  
Zirui Huang ◽  
Zhongfan Chen

In this paper, a restoring force model, composed of a trilinear skeleton curve and hysteretic rules, is proposed based on nine pseudostatic tests of the energy-dissipation joint under horizontal low cyclic loading. The critical points of the simplified skeleton curve are obtained via theoretical derivation and FE simulation. The hysteretic rules for the joints are simplified as a concave hexagon, where the parameters of the critical points are optimized by the genetic algorithm (GA). Using the established trilinear skeleton curve, three different working stages, i.e., elastic, hardening, and softening, were divided by the critical points and the moment stiffness of three stages can be calculated. The proposed hysteretic rules of each stage can reveal and explain the “pinching” in the cyclic loading, which make it easier to understand the mechanism of the energy-dissipation joint. The comparison between the restoring force model and the tests shows that the simplified skeleton curves, the established hysteretic rules, and the ductility and the damping ratio are consistent with the experimental results. Finally, the effectiveness of the established restoring force model is verified.


2014 ◽  
Vol 501-504 ◽  
pp. 700-703
Author(s):  
Pin Le Zhang

To study the seismic behavior of short pier shear wall, 6 short pier shear wall specimens are tested under low cyclic loading with axial load ratio of 0.2. Hysteretic rules and stiffness degradation rate are determined base on test results and feature points are defined by theory, restoring force model that considers the effect of two loading direction to hysteretic characteristics is proposed based on test research, which could be applied to the nonlinear dynamic analysis of the structure.


2016 ◽  
Vol 2016 ◽  
pp. 1-19 ◽  
Author(s):  
Guifeng Zhao ◽  
Meng Zhang ◽  
Yaoliang Li ◽  
Dawang Li

A numerical simulation of the hysteresis performance of corroded reinforced concrete (RC) frame columns was conducted. Moreover, the results obtained were compared with experimental data. On this basis, a degenerated three-linearity (D-TRI) restoring force model was established which could reflect the hysteresis performance of corroded RC frame columns through theoretical analysis and data fitting. Results indicated that the hysteretic bearing capacity of frame columns decreased significantly due to corrosion of the rebar. In view of the characteristics of the hysteresis curve, the plumpness of the hysteresis loop for frame columns decreased and shrinkage increased with increasing rebar corrosion. All these illustrated that the seismic energy dissipation performance of frame columns reduced but their brittleness increased. As for the features of the skeleton curve, the trends for corroded and noncorroded members were basically consistent and roughly corresponded to the features of a trilinear equivalent model. Thereby, the existing Clough hysteresis rule can be used to establish the restoring force model applicable to corroded RC frame columns based on that of the noncorroded RC members. The calculated skeleton curve and hysteresis curve of corroded RC frame columns using the D-TRI model are closer to the experimental results.


2020 ◽  
Vol 2020 ◽  
pp. 1-15
Author(s):  
Chen Cao ◽  
Shan-suo Zheng ◽  
Wei-bing Hu ◽  
Li-guo Dong ◽  
Xiao-rui Liu

The study aims to research the influence of salt fog corrosion cycles on seismic performance of reinforced concrete (RC) frame beam-column joints in coastal atmosphere. Based on low cyclic loading tests of six RC frame beam-column joint specimens, this study analyses the failure patterns, hysteresis loops, load carrying capacity, displacement, backbone curves, and energy dissipation capacity of corrosion-damaged RC frame beam-column joints. The effect of salt fog corrosion cycles and axial compression ratios are tested repeatedly. The results show that with the same level of axial compression of the frame joint specimens, as the increase of salt fog cycles, the strength, ductility, energy dissipation, bearing capacity, and deformation capacity of joints degenerated to different degrees. When the corrosion level is the same, the stiffness degradation appeared to be more apparent as the increase of axial compression ratio. Then, the behavior degeneration rule of the RC frame beam-column joints is analyzed and formed according to the results of the test; the degeneration restoring force models of corroded RC frame beam-column joints is formed and verified based on Clough’s three-line degenerate restoring force model and the introduction to cyclic degeneration index. The results show that the restoring force model can better describe the hysteresis characteristics of the beam-column joints of corroded RC frames. The research is a theoretical reference for the seismic analysis of the RC frame structure affected by coastal atmospheric environment.


2018 ◽  
Vol 2018 ◽  
pp. 1-9
Author(s):  
G. F. Chen ◽  
Y. Z. Zhang ◽  
X. J. Zhu

This paper presents an effective method of parameter ascertainment for the skeleton curve of corroded compression-bending members to establish its restoring force model. An assumption which considers the skeleton curve of damaged and undamaged members has similar shape is introduced into the fitting process of parameters. Meanwhile, two-dimensional plane section assumption is used to simplify the mathematical model and reduce the computational cost. Several sets of experimental data were compared with the prediction by the method developed in this paper, for its verification. The case studies show that the experimental trends can be captured very well.


2014 ◽  
Vol 17 (10) ◽  
pp. 1443-1457 ◽  
Author(s):  
Changqing Wang ◽  
Jianzhuang Xiao ◽  
Loan Pham ◽  
Tao Ding

The hysteresis behavior of a cast-in-situ recycled aggregate concrete (RAC) frame was analyzed based on shaking table tests on a one-fourth scaled model of a two-bay, two-span and 6-storey RAC frame. Then feature points and the stiffness degradation were defined and the deteriorating four-line-typed restoring force model was put forward. In the hysteresis model, the monotonic behavior is described by a four-line-typed skeleton curve which accounts for concrete cracking, yielding of reinforcing bars, maximum and ultimate point of the RAC frame model. The hysteresis behavior is described through a number of rules for unloading and reloading. Therefore, the restoring force model proposed in this study can capture the hysteresis response of the frame under seismic actions. Moreover, the displacement ductility of the RAC frame structure is evaluated based on the proposed restoring force model. It can be concluded from this investigation that the RAC frame structure with proper design and construction has favorable load-carrying capacity, deformation capacity, energy dissipation ability and seismic performance, and can be applied and popularized in the area with the requirement of aseismic fortification intensity.


2012 ◽  
Vol 517 ◽  
pp. 323-330
Author(s):  
Liang Bai ◽  
Tian Hua Zhou ◽  
Xing Wen Liang

Steel high performance concrete (SHPC) structural wall was a combination of steel and high performance concrete. They can give full play to the advantages of steel and high performance concrete and have better dynamic behavior. Several specimens of SHPC structural walls with different parameters were tested under constant axial loading and horizontal cyclic loading. The testing phenomena and failure mechanics of those walls were compared and analyzed. On the basis of theoretic formulas and testing data, the main characteristic points and the law of stiffness degradation were presented, then, the tri-linear and four linear restoring models were built and provided. At last, the calculation formulas of stiffness parameter in restoring force model at different stages of deformation were presented. The results show that the declined strength stage of skeleton curve of specimens is related to the yielding strain of boundary steel, axial load ratio and stirrup content. The restoring force model of SHPC structural wall is thus formed for the application of nonlinear dynamics analysis as well as static structural calculations.


2021 ◽  
Vol 11 (24) ◽  
pp. 12131
Author(s):  
Tan Wang ◽  
Ruinian Jiang ◽  
Shuaifeng Yuan ◽  
Kuo Yuan ◽  
Liwei Li ◽  
...  

Prefabricated shear walls have been widely used in engineering structures. Vertical connection joints of the walls are the key to ensure the safety of the structures. Steel–concrete composite structures have been proved to have a good bearing capacity and ductility. In this paper, a new type of prefabricated structure is proposed, in which vertical wall members are connected together through built-in steel sections and cast-in-place concrete. This paper studies the seismic performance of the proposed prefabricated concrete shear wall structure. Hysteretic curves and skeleton curves of the shear wall are obtained based on experimental analyses. A dimensionless skeleton curve model is developed using the theory of material mechanics and the method of regression analysis. A stiffness calculation method for different loading stages is obtained and a restoring force model is proposed. The proposed innovative prefabricated shear wall structure provides good resistance to seismic performance and the related analysis provides a fundamental reference for studies of prefabricated shear wall structures.


2018 ◽  
Vol 21 (13) ◽  
pp. 2018-2029
Author(s):  
Xide Zhang ◽  
Zhiheng Deng ◽  
Xiaofang Deng ◽  
Jingwei Ying ◽  
Tao Yang ◽  
...  

To evaluate the ductility and energy dissipation capacity of the beam with concrete-encased steel truss, eight specimens with different types of steel truss, reinforcement ratios, and shear span ratios were tested by low-cyclic loading regime. The results indicated that beams with concrete-encased steel truss performed plumped load–displacement hysteretic loops as well as high strength and stiffness. Moreover, cross-web members improved their seismic behavior more effectively than non-cross-web members. Finally, the restoring force model of concrete-encased steel truss beam is proposed in accordance with the experimental results, which can be used to predict the load–displacement behavior of concrete-encased steel truss beam. The results could also provide a reference for the design and application of concrete-encased steel truss beam in practice.


Sign in / Sign up

Export Citation Format

Share Document