scholarly journals Comparison of Stemness and Gene Expression between Gingiva and Dental Follicles in Children

2016 ◽  
Vol 2016 ◽  
pp. 1-11 ◽  
Author(s):  
Chung-Min Kang ◽  
Seong-Oh Kim ◽  
Mijeong Jeon ◽  
Hyung-Jun Choi ◽  
Han-Sung Jung ◽  
...  

The aim of this study was to compare the differential gene expression and stemness in the human gingiva and dental follicles (DFs) according to their biological characteristics. Gingiva (n=9) and DFs (n=9) were collected from 18 children. Comparative gene expression profiles were collected using cDNA microarray. The expression of development, chemotaxis, mesenchymal stem cells (MSCs), and induced pluripotent stem cells (iPSs) related genes was assessed by quantitative reverse transcription-polymerase chain reaction (qRT-PCR). Histological analysis was performed using hematoxylin-eosin and immunohistochemical staining. Gingiva had greater expression of genes related to keratinization, ectodermal development, and chemotaxis whereas DFs exhibited higher expression levels of genes related to tooth and embryo development. qRT-PCR analysis showed that the expression levels of iPSc factors includingSOX2,KLF4, andC-MYCwere58.5±26.3,12.4±3.5, and12.2±1.9times higher in gingiva andVCAM1(CD146) andALCAM(CD166) were33.5±6.9and4.3±0.8times higher in DFs. Genes related to MSCs markers includingCD13,CD34,CD73,CD90, andCD105were expressed at higher levels in DFs. The results of qRT-PCR and IHC staining supported the microarray analysis results. Interestingly, this study demonstrated transcription factors of iPS cells were expressed at higher levels in the gingiva. Given the minimal surgical discomfort and simple accessibility, gingiva is a good candidate stem cell source in regenerative dentistry.

2021 ◽  
Author(s):  
juanjuan wang ◽  
xin liu ◽  
jing yang ◽  
hanxing guo ◽  
jingjing li ◽  
...  

Abstract Small molecular compounds could improve the induction efficiency of induced pluripotent stem cells (iPS). To investigate their effects on the efficiency of interspecies nuclear transfers, fibroblasts from the Chuan snub-nosed monkey were treated with small molecular compounds and used as donor cells to be injected into the enucleated oocytes of a goat. The gene expression profiles in the cell-constructed embryos, with and without the small molecular compound treatments, were determined by qPCR. Results showed that the cell morphology showed obvious changes, while the gene expression profiles of the fibroblasts were altered by the treatment. The pluripotent genes (Oct4, sox2, and nanog) were significantly increased on treatment with the small molecular compounds. Results demonstrated that these small molecular compounds could alter the properties of the donor cells, to promote the expression levels of the pluripotent genes for the Chuan golden-goat interspecies embryo, which would provide references for conservation of Chuan snub-nosed monkey.


2021 ◽  
Vol 129 (Suppl_1) ◽  
Author(s):  
LU LIU ◽  
Adrien Georges ◽  
Nabila Bouatia-Naji

Introduction: Smooth muscle cells (SMCs) capacity to phenotype switching between proliferative and quiescent (contractile) is a widely studied mechanism in cardiovascular disease. Primary SMCs tend to lose many physiological features in culture, which makes the study of their contractile function challenging. Recently, an optimized protocol of induced pluripotent stem cells (iPSCs) differentiation into contractile SMCs was described. Here we aimed at defining the transcriptomic and open chromatin dynamics during the acquisition of SMCs phenotypes. Methods: We differentiated 4 human iPSC lines (2 males, 2 females) towards either contractile (Repsox induced) or synthetic (PDGF-BB/TGF-β induced) SMC phenotypes using a 24-days protocol. We performed RNA-Seq and assay for transposase accessible chromatin (ATAC)-Seq at 5 time points of differentiation. We analyzed gene expression profiles and compared them to existing dataset of human aorta by principle component analyses (PCA) and gene set enrichment analyses using GO terms. Results: iPSCs derived SMCs showed expected morphology and positive expression of SMC markers. Synthetic SMCs (SSMCs) exhibited greater capacity of proliferation, migration and lower calcium release capacity, compared to contractile SMCs (CSMCs). RNA-Seq results showed that multiple genes involved in the contractile function of arteries, including myosin light chain kinase (MYLK) and angiotensin type 1 receptor ( AGTR1 ) genes were highly expressed in CSMCs compared to SSMCs. Overall, CSMCs conserved SMC properties beyond 24 days and their gene expression profile clustered near human aorta. During late differentiation stages, CSMCs showed an upregulation of genes involved in cardiovascular system development, whereas genes involved in cell stress were upregulated in SSMCs. Conclusions: We describe global genomic profiles of iPSCs derived CSMCs that presented comparable gene expression profiles to mature artery tissue. Combination with upcoming DNA accessibility maps is expected to allow the functional exploration of genetic risk variation involved in several arterial diseases involving the impairment of the SMCs contractile function.


2015 ◽  
Vol 27 (1) ◽  
pp. 261
Author(s):  
C.-F. Mo ◽  
F.-C. Wu ◽  
K.-Y. T. Tai ◽  
W.-C. Chang ◽  
K.-W. Chang ◽  
...  

Pluripotent stem cells are increasingly used for therapeutic models, including transplantation of neural progenitors derived from human embryonic stem cells (hESC). Recently, long noncoding RNA (lncRNA), including Maternally Expressed Gene 3 (MEG3) derived from the DLK1-DIO3-imprinted locus, were found to be expressed during neural developmental events. Their deregulations are associated with various neurological diseases. The DLK1-DIO3-imprinted locus encodes abundant noncoding RNA (ncRNA) that are regulated by differential methylation on the locus. The aim of our research was to study the correlation between the DLK1-DIO3-derived ncRNA and the capacity of hESC neural lineage differentiation. We classified hESC into MEG3-ON and MEG3-OFF based on the expression levels of MEG3 as well as its downstream microRNA by qRT-PCR. Initial embryoid body (EB) formation was conducted to examine the 3 germ layer's differentiation ability. Complementary DNA microarray was used to analyse the gene expression profiles of hESC. Directed neural lineage differentiation was performed, followed by analysis of neural lineage marker expression levels and neurite formation via qRT-PCR and immunocytochemistry methods to investigate the capacity of neural differentiation in MEG3-ON and MEG3-OFF hESC. As for statistics, error bars indicate standard error of the mean. Student's t-test was used for calculating P-values, and a P-value of less than 0.05 was considered to be significant. Our results showed that MEG3-ON and MEG3-OFF hESC differed greatly in DLK1-DIO3-derived ncRNA expression levels, but had comparable pluripotency gene expression profiles. Genes related to nervous system development and neural cancers were differentially expressed in MEG3-OFF hESC, where DLK1-DIO3-derived ncRNA were repressed compared to MEG3-ON ones before differentiation. In neural lineage-like cells derived from MEG3-OFF hESC, lower expression levels of neural lineage markers and impaired neurite formation were observed compared to MEG3-ON hESC at the same time points after differentiation. We suggest that the expression of DLK1-DIO3-derived lncRNA, MEG3, can be used as a simple and effective screening criterion for identifying MEG3-ON hESC with activation of DLK1-DIO3-imprinted ncRNA as starting materials to benefit neural lineage-associated studies.


Sign in / Sign up

Export Citation Format

Share Document