scholarly journals Growth and Characterization of M-Plane GaN Thin Films Grown on γ-LiAlO2 (100) Substrates

Scanning ◽  
2017 ◽  
Vol 2017 ◽  
pp. 1-7
Author(s):  
Yu-Chiao Lin ◽  
Ikai Lo ◽  
Hui-Chun Shih ◽  
Mitch M. C. Chou ◽  
D. M. Schaadt

M-plane GaN thin films were grown on LiAlO2 substrates under different N/Ga flux ratios by plasma-assisted molecular beam epitaxy. An anisotropic growth of M-plane GaN was demonstrated against the N/Ga flux ratio. As the N/Ga flux ratio decreased by increasing Ga flux, the GaN surface trended to a flat morphology with stripes along [112-0]. According to high-resolution X-ray diffraction analysis, Li5GaO4 was observed on the interface between GaN and LiAlO2 substrate. The formation of Li5GaO4 would influence the surface morphology and crystal quality.

1996 ◽  
Vol 421 ◽  
Author(s):  
J. Wagner ◽  
J. Schmitz ◽  
F. Fuchs ◽  
U. Weimar ◽  
N. Herres ◽  
...  

AbstractWe report on the structural characterization of InAs/(GaIn)Sb superlattices (SL) grown by solid-source molecular-beam epitaxy. SL periodicity and overall structural quality were assessed by high-resolution X-ray diffraction and Raman spectroscopy. Spectroscopic ellipsometry was found to be sensitive to the (GaIn)Sb alloy composition.


2018 ◽  
Vol 924 ◽  
pp. 15-18
Author(s):  
Masashi Sonoda ◽  
Kentaro Shioura ◽  
Takahiro Nakano ◽  
Noboru Ohtani ◽  
Masakazu Katsuno ◽  
...  

The defect structure at the growth front of 4H-SiC boules grown using the physical vapor transport (PVT) method has been investigated using high resolution x-ray diffraction and x-ray topography. The crystal parameters such as the c-lattice constant exhibited characteristic variations across the growth front, which appeared to be caused by variation in surface morphology of the as-grown surface of the boules rather than the defect structure underneath the surface. X-ray topography also revealed that basal plane dislocations are hardly nucleated at the growth front during PVT growth of 4H-SiC crystals.


1987 ◽  
Vol 103 ◽  
Author(s):  
J. M. Vandenberg ◽  
M. B. Panish ◽  
R. A. Hamm

ABSTRACTHigh-resolution X-ray diffraction (HRXRD) studies have been cardied out to determine the structural perfection and periodicity for a number of high-quality InGaAsfInP superlattices grown by gas source molecular beam epitaxy. X-ray scans were carried out with a compact four-crystal monochromator resulting in a resolution of one molecular layer (∼3,Å), which enables one to observe very small variations in the periodic structure. Sharp and strong higher-order satellite reflections in the XRD profiles were observed indicating smooth interfaces with well-defined modulated structures. Excellent computer simulated fits of the X-ray satellite pattern could be generated based on a kinematical XRD step model which assumes ideally sharp interfaces, and periodic structural parameters such as the strain in the well could be extracted. Our results3 demonstrate that HRXRD in conjunction with the kinematical step model is a very sensitive method to assess periodic structural modifications in superlattices as a result of the precise growth conditions in the gas source MBE system.


2011 ◽  
Vol 1 ◽  
pp. 135-139 ◽  
Author(s):  
M. Asghar ◽  
Khalid Mahmood ◽  
Adnan Ali ◽  
M.A. Hasan ◽  
I. Hussain ◽  
...  

Origin of ultraviolet (UV) luminescence from bulk ZnO has been investigated with the help of photoluminescence (PL) measurements. Thin films of ZnO having 52%, 53% and 54% of Zn-contents were prepared by means of molecular beam epitaxy (MBE). We observed a dominant UV line at 3.28 eV and a visible line centered at 2.5 eV in the PL spectrum performed at room temperature. The intensity of UV line has been found to depend upon the Zn percentage in the ZnO layers. Thereby, we correlate the UV line in our samples with the Zn-interstitials-bound exciton (Zni-X) recombination. The results obtained from, x-ray diffraction, the energy dispersive X-ray spectrum (EDAX) and Raman spectroscopy supported the PL results.


1995 ◽  
Vol 399 ◽  
Author(s):  
M. Shima ◽  
L. Salamanca-Riba ◽  
G. Springholz ◽  
G. Bauer

ABSTRACTMolecular beam epitaxy was used to grow EuTe(x)/PbTe(y) short period superlattices with x=1-4 EuTe(111) monolayers alternating with y≈3x PbTe monolayers. The superlattices were characterized by transmission electron microscopy and high resolution x-ray diffraction. Regions with double periodicity were observed coexisting with areas of nominal periodicity. The sample with x=3.5 and y=9, for example, contains regions with double periodicity of x=7 and y=17. X-ray diffraction measurements confirm the formation of the double periodicity in these samples by the appearance of weak satellites in between the satellites of the nominal periodicity. The double periodicity in the superlattice is believed to result from interdiffusion during the growth. A model for this process is presented.


Author(s):  
В.В. Ратников ◽  
Д.В. Нечаев ◽  
А.В. Мясоедов ◽  
О.А. Кошелев ◽  
В.Н. Жмерик

Multiple-crystal X-ray diffraction and a multi-beam optical stress sensor were used to study AlN/c-sapphire templates grown by plasma-assisted molecular beam epitaxy. The influence of the nucleation and buffer layers growth regimes, temperature, the ratio between Al and N* growth fluxes on the stress generation and the character of the dislocation structure were analyzed. Templates with the best crystal quality with screw and edge threading dislocation densities in a range of 4∙10^8 and 8∙10^9 cm-2, respectively, were obtained at the flux ratio of Al to N* close to 1 by using two-stage temperature regimes.


Sign in / Sign up

Export Citation Format

Share Document