scholarly journals Analysis of MCLP, Q-MALP, and MQ-MALP with Travel Time Uncertainty Using Monte Carlo Simulation

2017 ◽  
Vol 2017 ◽  
pp. 1-15 ◽  
Author(s):  
Noraida Abdul Ghani ◽  
Norazura Ahmad

This paper compares the application of the Monte Carlo simulation in incorporating travel time uncertainties in ambulance location problem using three models: Maximum Covering Location Problem (MCLP), Queuing Maximum Availability Location Problem (Q-MALP), and Multiserver Queuing Maximum Availability Location Problem (MQ-MALP). A heuristic method is developed to site the ambulances. The models are applied to the 33-node problem representing Austin, Texas, and the 55-node problem. For the 33-node problem, the results show that the servers are less spatially distributed in Q-MALP and MQ-MALP when the uncertainty of server availability is considered using either the independent or dependent travel time. On the other hand, for the 55-node problem, the spatial distribution of the servers obtained by locating a server to the highest hit node location is more dispersed in MCLP and Q-MALP. The implications of the new model for the ambulance services system design are discussed as well as the limitations of the modeling approach.

2017 ◽  
Author(s):  
Στυλιανός Λιοδάκης

Uncertainty is endemic in geospatial data due to the imperfect means of recording, processing, and representing spatial information. Propagating geospatial model inputs inherent uncertainty to uncertainty in model predictions is a critical requirement in each model's impact assessment and risk-conscious policy decision-making. It is still extremely difficult, however, to perform in practice uncertainty analysis of model outputs, particularly in complex spatially distributed environmental models, partially due to computational constraints.In the field of groundwater hydrology, the "stochastic revolution" has produced an enormous number of theoretical publications and greatly influenced our perspective on uncertainty and heterogeneity; it has had relatively little impact, however, on practical modeling. Monte Carlo simulation using simple random (SR) sampling from a multivariate distribution is one of the most widely used family of methods for uncertainty propagation in hydrogeological flow and transport model predictions, the other being analytical propagation.Real-life hydrogeological problems however, consist of complex and non-linear three dimensional groundwater models with millions of nodes and irregular boundary conditions. The number of Monte-Carlo runs required in these cases, depends on the number of uncertain parameters and on the relative accuracy required for the distribution of model predictions. In the context of sensitivity studies, inverse modelling or Monte-Carlo analyses, the ensuing computational burden is usually overwhelming and computationally impractical. These tough computational constrains have to be relaxed and removed before meaningful stochastic groundwater modeling applications are possible.A computationally efficient alternative to classical Monte Carlo simulation based on SR sampling is Latin hypercube (LH) sampling, a form of stratified random sampling. The latter yields a more representative distribution of model outputs (in terms of smaller sampling variability of their statistics) for the same number of input simulated realizations. The ability to generate unbiased LH realizations becomes critical in a spatial context, where random variables are geo-referenced and exhibit spatial correlation, to ensure unbiased outputs of complex models. On this regard, this dissertation offers a detailed analysis of LH sampling and compares it with SR sampling in a hydrogeological context. Additionally, two alternative stratified sampling methods, here named stratified likelihood (SL) sampling and minimum energy (ME) sampling, are examined (proposed in a spatial context) and their efficiency is further compared to SR and LH in a hydrogeological context; also accounting for the uncertainty related to the particular model at hand via a two step sampling method. All three stratified sampling methods (accounting for model sensitivity in the second case study) were found in this work to be more efficient than simple random sampling.Additionally, this thesis proposes a novel method for the expansion of the application domain of LH sampling to very large regular grids which is the common case in environmental (hydrogeological or not) models. More specifically, a novel combination of Stein's Latin Hypercube sampling with a Monte Carlo simulation method applicable over high discretization domains is proposed, and its performance is further validated in 2D and 3D hydrogeological problems of flow and transport in a mid-heterogeneous porous media, both consisting of about $1$ million nodes. Last, an additional novel extension of the proposed LH sampling on large grids is adopted for conditional high discretized problems. In this case too, the performance of the proposed approach is evaluated in a 3D hydrogeological model of flow and transport. Results indicate that both extensions (conditional and not) of LH sampling on large grids facilitate efficient uncertainty propagation with fewer model runs due to more representative model inputs. Overall, it could be argued that all the proposed methodological approaches could reduce the time and computer resources required to perform uncertainty analysis in hydrogeological flow and transport problems. Additionally, since it is the first time that stratified sampling is performed over high discretization domains, it could be argued that the proposed extensions of LH sampling on large grids could be considered a milestone for future uncertainty analysis efforts. Moreover, all the proposed stratified methods could contribute to a wider application of uncertainty analysis endeavors in a Monte Carlo framework for any spatially distributed impact assessment study.


2017 ◽  
Vol 8 (1) ◽  
pp. 17
Author(s):  
Dawood Eisa Sachit ◽  
Hayat Kareem Shukur Azawi

In this study, a computerized mathematical method represented by Monte Carlo simulation was used to predict the travel time of the groundwater flow in the Iraqi western desert. During the run of the simulations, all the hydraulic parameters of Darcy’s Law were fixed but the hydraulic conductivity. The input data of the hydraulic conductivity is compared to the triangular distribution function to find the best number of iteration to run the simulations. The results showed that an iteration number of 5000 was enough to achieve best match between the input data of the hydraulic conductivity and the fitted distribution function. In addition, the estimated travel time of the groundwater flow is broadly varied through the entire area and ranges from 1983 years to 113 741 years based on 10 000 m of travel distance. Furthermore, hydraulic conductivity of the aquifer has high impact on the estimated travel time of the groundwater flow. However, head difference of groundwater elevation among the selected wells considerably influences the expected travel time of the groundwater flow.


2020 ◽  
Author(s):  
Pedro Velloso Gomes Batista ◽  
J Patrick Laceby ◽  
Jessica Davies ◽  
Teotônio Soares de Carvalho ◽  
Diego Tassinari ◽  
...  

<p>Evaluating the usefulness of spatially-distributed soil erosion and sediment delivery models is inherently difficult. Complications stem from the uncertainty in models and measurements of system responses, as well as from the scarcity of commensurable spatial data for model testing. Here, we present an approach for evaluating distributed soil erosion and sediment delivery models, which incorporates sediment source fingerprinting into model testing within a stochastic framework. We applied the Generalized Likelihood Uncertainty Estimation (GLUE) methodology to the Sediment Delivery Distributed (SEDD) model for the Mortes River catchment (~6600 km²) in Southeast Brazil. Sediment concentration measurements were used to estimate long-term sediment loads with a sediment rating curve. Regression uncertainty was propagated with posterior simulations of model coefficients. A Monte Carlo simulation was used to generate SEDD model realizations, which were compared against limits of acceptability of model errors derived from the uncertainty in the curve-estimated sediment loads. The models usefulness for identifying the sediment sources in the catchment was assessed by evaluating behavioral model realizations against sediment fingerprinting source apportionments. Accordingly, we developed a hierarchical tributary sampling design, in which sink sediments were sampled from multiple nodes in the main river channel. The relative contributions of the main sub-catchments in the basin were subsequently estimated by solving the fingerprinting un-mixing model with a Monte Carlo simulation. Results indicated that gauging station measurements of sediment loads were fairly uncertain (average annual specific sediment yields = 0.47 – 11.95 ton ha<sup>-1</sup> yr<sup>-1</sup>). This led to 23.4 % of SEDD model realizations being considered behavioral system representations. Spatially-distributed estimates of sediment delivery to water courses were also highly uncertain, as grid-based absolute errors of SEDD results were hundredfold the median of the predictions. A comparison of SEDD outputs and fingerprinting source apportionments revealed an overall agreement between modeled contributions from individual sub-catchments to sediment loads, although some large discrepancies were found in a specific tributary. From a falsificationist perspective, the SEDD model could not be rejected, as many model realizations were behavioral. The partial agreement between fingerprinting and SEDD results provide some conditional corroboration of the models capability to identify the sources of sediments in the catchment, at least with some degree of spatial aggregation. However, the uncertainty in the grid-based outputs might dispute the models usefulness for actually quantifying sediment dynamics under the testing conditions. For management purposes, both SEDD and fingerprinting results indicated that most of the sediments reaching the hydroelectric power plant reservoir located at the outlet of the Mortes River originated from mid and upper catchment tributaries. The convergence of model results therefore evince that reducing reservoir sedimentation rates requires widespread soil conservation efforts throughout the catchment, instead of local/proximal interventions. Ultimately, we have shown how sediment source fingerprinting can be incorporated into the evaluation of spatially-distributed soil erosion and sediment delivery models while considering the uncertainty in both models and observational data.</p>


Author(s):  
Ryuichi Shimizu ◽  
Ze-Jun Ding

Monte Carlo simulation has been becoming most powerful tool to describe the electron scattering in solids, leading to more comprehensive understanding of the complicated mechanism of generation of various types of signals for microbeam analysis.The present paper proposes a practical model for the Monte Carlo simulation of scattering processes of a penetrating electron and the generation of the slow secondaries in solids. The model is based on the combined use of Gryzinski’s inner-shell electron excitation function and the dielectric function for taking into account the valence electron contribution in inelastic scattering processes, while the cross-sections derived by partial wave expansion method are used for describing elastic scattering processes. An improvement of the use of this elastic scattering cross-section can be seen in the success to describe the anisotropy of angular distribution of elastically backscattered electrons from Au in low energy region, shown in Fig.l. Fig.l(a) shows the elastic cross-sections of 600 eV electron for single Au-atom, clearly indicating that the angular distribution is no more smooth as expected from Rutherford scattering formula, but has the socalled lobes appearing at the large scattering angle.


Sign in / Sign up

Export Citation Format

Share Document