scholarly journals Investigation of Sphere Decoder and Channel Tracking Algorithms for Media-Based Modulation over Time-Selective Channels

2017 ◽  
Vol 2017 ◽  
pp. 1-11
Author(s):  
Yongzhi Li ◽  
Cheng Tao ◽  
Yapeng Li ◽  
Liu Liu ◽  
Tao Zhou

The performance of media-based modulation (MBM) systems, where additional information can be conveyed by the indices of the channel states created by RF mirrors, over time-selective channels is investigated. By transforming the MBM system model into a traditional MIMO system model, we first propose a reduced complexity sphere decoder algorithm. Then two channel tracking algorithms, which are based on least mean square adaptive filter and recursive least-squares adaptive filter, are employed in order to combat the performance loss caused by the time-varying channels. Numerical results show that the proposed sphere decoder and these two channel tracking algorithms perform well in MBM systems.

Author(s):  
IMTEYAZ AHMAD ◽  
F. ANSARI ◽  
U.K. DEY

Background: The electrocardiogram(ECG) has the considerable diagnostic significance, and applications of ECG monitoring are diverse and in wide use. Noises that commonly disturb the basic electrocardiogram are power line interference(PLI), instrumentation noise, external electromagnetic field interference, noise due to random body movements and respiration movements. These noises can be classified according to their frequency content. It is essential to reduce these disturbances in ECG signal to improve accuracy and reliability. The bandwidth of the noise overlaps that of wanted signals, so that simple filtering cannot sufficiently enhance the signal to noise ratio. It is difficult to apply filters with fixed filter co-efficients to reduce these noise. Adaptive filter technique is required to overcome this problem as the filter coefficients can be varied to track the dynamic variations of the signals. Adaptive filter based on the least mean square (LMS) algorithm and recursive least squares (RLS) algorithm are applied to noisy ECG to reduce 50 Hz power line noise and motion artifact noise. Method: ECG signal is taken from physionet database. A ECG signal (without noise) was mixed with constant 0.1 mVp-p 50 Hz interference and motion artifact noise processed with Adaptive filter based on the least mean square (LMS) algorithm and recursive least squares (RLS) algorithm. Simulation results are also shown. Performance of filters are analyzed based on SNR and MSE.


Author(s):  
Yunfeng Wu ◽  
Rangaraj M. Rangayyan

The electrocardiographic (ECG) signal is a transthoracic manifestation of the electrical activity of the heart and is widely used in clinical applications. This chapter describes an unbiased linear adaptive filter (ULAF) to attenuate high-frequency random noise present in ECG signals. The ULAF does not contain a bias in its summation unit and the filter coefficients are normalized. During the adaptation process, the normalized coefficients are updated with the steepest-descent algorithm to achieve efficient filtering of noisy ECG signals. A total of 16 ECG signals were tested in the adaptive filtering experiments with the ULAF, the least-mean-square (LMS), and the recursive-least-squares (RLS) adaptive filters. The filtering performance was quantified in terms of the root-mean-squared error (RMSE), normalized correlation coefficient (NCC), and filtered noise entropy (FNE). A template derived from each ECG signal was used as the reference to compute the measures of filtering performance. The results indicated that the ULAF was able to provide noise-free ECG signals with an average RMSE of 0.0287, which was lower than the second-best RMSE obtained with the LMS filter. With respect to waveform fidelity, the ULAF provided the highest average NCC (0.9964) among the three filters studied. In addition, the ULAF effectively removed more noise, measured by FNE, in comparison with the LMS and RLS filters in most of the ECG signals tested. The issues of adaptive filter setting for noise reduction in ECG signals are discussed at the end of this chapter.


Author(s):  
Yunfeng Wu ◽  
Rangaraj M. Rangayyan

The authors propose an unbiased linear adaptive filter (ULAF) to eliminate high-frequency random noise in electrocardiographic (ECG) signals. The ULAF does not contain a bias in its summation unit, and the filter coefficients are normalized. During the adaptation process, the normalized coefficients are updated with the steepest-descent algorithm in order to achieve efficient filtering of noisy ECG signals. The authors tested the ULAF with ECG signals recorded from 16 subjects, and compared the performance of the ULAF with that of the least-mean-square (LMS) and recursive-least-squares (RLS) adaptive filters. The filtering performance was quantified in terms of the root-mean-squared error (RMSE), normalized correlation coefficient (NCC), and filtered noise entropy (FNE). A template derived from each ECG signal was used as the reference to compute the measures of filtering performance. The results indicated that the ULAF was able to provided noise-free ECG signals with an average RMSE of 0.0287, which was lower than the second best RMSE (0.0365) obtained with the LMS filter. With respect to waveform fidelity, the proposed ULAF provided the highest average NCC (0.9964) among the three filters studied. In addition, the ULAF effectively removed more noise measured by FNE versus the LMS and RLS filters in most of the ECG signals tested.


2013 ◽  
Vol 32 (7) ◽  
pp. 2078-2081
Author(s):  
Cheng-xi WANG ◽  
Yi-an LIU ◽  
Qiang ZHANG

Cancers ◽  
2021 ◽  
Vol 13 (18) ◽  
pp. 4560
Author(s):  
Jerome Griffon ◽  
Delphine Buffello ◽  
Alain Giron ◽  
S. Lori Bridal ◽  
Michele Lamuraglia

Purpose: There is a clinical need to better non-invasively characterize the tumor microenvironment in order to reveal evidence of early tumor response to therapy and to better understand therapeutic response. The goals of this work are first to compare the sensitivity to modifications occurring during tumor growth for measurements of tumor volume, immunohistochemistry parameters, and emerging ultrasound parameters (Shear Wave Elastography (SWE) and dynamic Contrast-Enhanced Ultrasound (CEUS)), and secondly, to study the link between the different parameters. Methods: Five different groups of 9 to 10 BALB/c female mice with subcutaneous CT26 tumors were imaged using B-mode morphological imaging, SWE, and CEUS at different dates. Whole-slice immunohistological data stained for the nuclei, T lymphocytes, apoptosis, and vascular endothelium from these tumors were analyzed. Results: Tumor volume and three CEUS parameters (Time to Peak, Wash-In Rate, and Wash-Out Rate) significantly changed over time. The immunohistological parameters, CEUS parameters, and SWE parameters showed intracorrelation. Four immunohistological parameters (the number of T lymphocytes per mm2 and its standard deviation, the percentage area of apoptosis, and the colocalization of apoptosis and vascular endothelium) were correlated with the CEUS parameters (Time to Peak, Wash-In Rate, Wash-Out Rate, and Mean Transit Time). The SWE parameters were not correlated with the CEUS parameters nor with the immunohistological parameters. Conclusions: US imaging can provide additional information on tumoral changes. This could help to better explore the effect of therapies on tumor evolution, by studying the evolution of the parameters over time and by studying their correlations.


Sign in / Sign up

Export Citation Format

Share Document