scholarly journals Accuracy, Precision, and Trending Ability of Electrical Cardiometry Cardiac Index versus Continuous Pulmonary Artery Thermodilution Method: A Prospective, Observational Study

2017 ◽  
Vol 2017 ◽  
pp. 1-8 ◽  
Author(s):  
P. B. W. Cox ◽  
A. M. den Ouden ◽  
M. Theunissen ◽  
L. J. Montenij ◽  
A. G. H. Kessels ◽  
...  

Introduction. Evaluation of accuracy, precision, and trending ability of cardiac index (CI) measurements using the Aesculon™ bioimpedance electrical cardiometry (Aesc) compared to the continuous pulmonary artery thermodilution catheter (PAC) technique before, during, and after cardiac surgery. Methods. A prospective observational study with fifty patients with ASA 3-4. At six time points (T), measurements of CI simultaneously by continuous cardiac output pulmonary thermodilution and thoracic bioimpedance and standard hemodynamics were performed. Analysis was performed using Bland-Altman, four-quadrant plot, and polar plot methodology. Results. CI obtained with pulmonary artery thermodilution and thoracic bioimpedance ranged from 1.00 to 6.75 L min−1 and 0.93 to 7.25 L min−1, respectively. Bland-Altman analysis showed a bias between CIBIO and CIPAC of 0.52 liters min−1 m−2, with LOA of [−2.2; 1.1] liters min−1 m−2. Percentage error between the two techniques was above 30% at every time point. Polar plot methodology and 4-quadrant analysis showed poor trending ability. Skin incision had no effect on the results. Conclusion. CI obtained by continuous PAC and CI obtained by Aesculon bioimpedance are not interchangeable in cardiac surgical patients. No effects of skin incision were found. International clinical trial registration number is ISRCTN26732484.

2021 ◽  
Vol 11 (5) ◽  
Author(s):  
Dita Aditianingsih ◽  
Jefferson Hidayat ◽  
Vivi Medina Ginting

Background: Cardiac index (CI; cardiac output indexed to body surface area) is routinely measured during kidney transplant surgery. Bioimpedance cardiometry is a transthoracic impedance as the non-invasive alternative for hemodynamic monitoring, using semi-invasive uncalibrated pulse wave or contour (UPC) analysis. Objectives: We performed a cross-sectional observational study on 50 kidney transplant patients to compare the CI measurement agreement, concordance rate, and trending ability between bioimpedance and UPC analysis. Methods: For each patient, CI was measured by bioimpedance analysis (ICONTM) and UPC analysis (EV1000TM) devices at three time points: after induction, during incision, and at reperfusion. The device measurement accuracy was assessed by the bias value, limit of agreement (LoA), and percentage error (PE) using Bland-Altman analyses. Trending ability was assessed by angular bias and polar concordance through four-quadrant and polar plot analyses. Results: From each time point and pooled measurement, the correlation coefficients were 0.267, 0.327, 0.321, and 0.348. Bland-Altman analyses showed mean bias values of 1.18, 1.06, 1.48, and 1.30, LoA of -1.35 to 3.72, -1.39 to 3.51, -1.07 to 4.04, and -1.17 to 3.78, and PE of 82.21, 78.50, 68.74, and 74.58%, respectively. Polar plot analyses revealed angular bias values of -10.37º, -15.01º, -18.68º, and -12.62º, with radial LoA of 89.79º, 85.86º, 83.38º, and 87.82º, respectively. The four-quadrant plot concordance rates were 70.77, 67.35, 65.90, and 69.79%. These analyses showed poor agreement, weak concordance, and low trending ability of bioimpedance cardiometry to UPC analysis. Conclusions: Bioimpedance and UPC analysis for CI measurements were not interchangeable in patients undergoing kidney transplant surgery. Cardiac index monitoring using bioimpedance cardiometry during kidney transplantation should be interpreted cautiously because it showed poor reliability due to low accuracy, precision, and trending ability for CI measurement.


2022 ◽  
Vol 8 (4) ◽  
pp. 278-280
Author(s):  
Sreeja Shanker J ◽  
H L Vishwanath ◽  
Vibha C ◽  
Muralidhara Krishna

To categorize and calculate the percentage error of pre-analytical variables in the clinical biochemistry laboratory. Prospective observational study conducted for two months with documenting the frequency and type of pre-analytical errors occurring in venous samples. The total errors recorded were 1.31%. Insufficient volume followed by haemolysis amounted to a major proportion of errors. Continuous pre-analytical phase evaluation and taking corrective measures to make this phase error-free, have to be done.


2021 ◽  
Vol 10 (2) ◽  
pp. 213
Author(s):  
Paolo Persona ◽  
Ilaria Valeri ◽  
Elisabetta Saraceni ◽  
Alessandro De Cassai ◽  
Fabrizia Calabrese ◽  
...  

There are no reliable, non-invasive methods to accurately measure cardiac output (CO) in septic patients. MostCare (Vytech Health™, Vygon, Padova, Italy), is a beat-to-beat, self calibrated method for CO measurement based on continuous analysis of reflected arterial pressure waveforms. We enrolled 40 patients that were suffering from septic shock and requiring norepinephrine infusion to target blood pressure in order to to evaluate the level of agreement between a calibrated transpulmonary thermodilution device (PiCCO System, Pulsion Medical Systems, Feldkirchen, Germany) and the MostCare system in detecting and tracking changes in CO measurements related to norepinephrine reduction in septic shock patients,. PiCCO was connected to a 5 Fr femoral artery catheter and to a central venous catheter. System calibration was performed with 15 mL of cold saline injection over about 3 s. The MostCare device was connected to the artery catheter to analyze the arterial waveform. Before reducing norepinephrine infusion, the PiCCO system was calibrated, the MostCare waveform was optimized, and the values of the complete hemodynamic profile were recorded (T1). Norepinephrine infusion was then reduced by 0.03 mcg/Kg/min. After 30 min, a new calibration of PiCCO system and a new record on both monitors were performed (T2). Static measurements agreements were assessed using the Bland-Altman test, while trending ability was investigated using polar plot analysis. If volume expansion occurred, then related data were separately analyzed. At T1 mean the CO was 5.38 (SD 0.60) L/min, the mean difference was 0.176 L/min, the limits of agreement (LoA) was +1.39 and −1.04 L/min, and the percentage error (PE) was 22.6%; at T2 the mean CO was 5.44 (SD 0.73) L/min, the mean difference was 0.053 L/min, the LoA was +1.51 and −1.40, and the PE was 27%. After considering the volume expansion between T1 and T2, the mean CO at T1 was 5.39 L/min (SD 0.47), the LoA was +1.09 and −0.78 L/min, and the percentage error (PE) was 17%; at T2 the mean CO was 5.35 L/min (SD 0.81), the LoA was +1.73 and −1.52 L/min, and the PE was 30%. The polar plot diagram seems to confirm the trending ability of MostCare system versus the reference method. In septic patients, when the arterial waveform is accurate, MostCare and PiCCO transpulmonary thermodilution exhibit good agreement even after the reduction of norepinephrine and changes in vascular tone or volume expansion. MostCare could be a rapid to set, reliable, and useful tool to monitor hemodynamic variations in septic patients in emergency contexts where thermodilution methods or other advanced systems are not easily available.


2019 ◽  
Vol 20 (4) ◽  
pp. 338-341
Author(s):  
Alpaslan Kaban ◽  
Ayça Küçükyurt ◽  
Ayça Durmuş ◽  
Işık Kaban ◽  
Fatma Ferda Verit

2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Ulf Lorenzen ◽  
Markus Pohlmann ◽  
Jonathan Hansen ◽  
Phil Klose ◽  
Matthias Gruenewald ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document