scholarly journals An Iterative Mesh Untangling Algorithm Using Edge Flip

2017 ◽  
Vol 2017 ◽  
pp. 1-10 ◽  
Author(s):  
Jibum Kim

Existing mesh untangling algorithms are unable to untangle highly tangled meshes. In this study, we address this problem by proposing an iterative mesh untangling algorithm using edge flip. Our goal is to produce meshes with no inverted elements and good element qualities when inverted elements with poor element qualities are produced during mesh generation or mesh deformation process. Our proposed algorithm is composed of three steps: first, we iteratively perform edge flip; subsequently, optimization-based mesh untangling is conducted until all inverted elements are eliminated; finally, we perform mesh smoothing for generating high-quality meshes. Numerical results show that the proposed algorithm is able to successfully generate high-quality meshes with no inverted elements for highly tangled meshes.

1982 ◽  
Vol 104 (3) ◽  
pp. 319-325 ◽  
Author(s):  
Y. Kita ◽  
M. Ido ◽  
N. Kawasaki

Although the chip formation mechanism by a tool having a large negative rake angle is not well known, it is very important to make the process clear in order to get high quality in finished surfaces. In this paper, the behavior of material ahead of a tool face with a large negative rake angle is examined by means of low speed machining on lead. The deformation process of the material is investigated by the deformation study combining a finite element method with a grid line method. During cutting, the deformation process of grid lines which were drawn on the sides of testpieces was observed through a side glass which restricted the side flow of material. Cutting force was measured by a dynamometer consisting of an elongated octagonal ring with strain wire gages. As a result it was found that the shear stress on the slip line of maximum increment of shear strain is nearly constant, but the compressive stress changes along the line. It was concave near the top of cutting edge and convex near the surface of the test piece. The position of the change of polarity in the slope shifted depending on the rake angle of the tool. This phenomenon is considered to have close relation with the stagnant tip, which decides not only the size of chip, but also whether or not a chip will be formed. Flow lines of material and the deformed region ahead of tool faces with different negative rake angles were also obtained and they were compared with each other.


Water ◽  
2019 ◽  
Vol 11 (10) ◽  
pp. 2033 ◽  
Author(s):  
Guodong Li ◽  
Guoding Chen ◽  
Pengfeng Li ◽  
Haixiao Jing

High-speed and accurate simulations of landslide-generated tsunamis are of great importance for the understanding of generation and propagation of water waves and for prediction of these natural disasters. A three-dimensional numerical model, based on Reynolds-averaged Navier–Stokes equations, is developed to simulate the landslide-generated tsunami. Available experiment data is used to validate the numerical model and to investigate the scale effect of numerical model according to the Froude similarity criterion. Based on grid convergence index (GCI) analysis, fourteen cases are arranged to study the sensitivity of numerical results to mesh resolution. Results show that numerical results are more sensitive to mesh resolution in near field than that in the propagation field. Nonuniform meshes can be used to balance the computational efficiency and accuracy. A mesh generation strategy is proposed and validated, achieving an accurate prediction and nearly 22 times reduction of computational cost. Further, this strategy of mesh generation is applied to simulate the Laxiwa Reservoir landslide tsunami. The results of this study provide an important guide for the establishment of a numerical model of the real-world problem of landslide tsunami.


2007 ◽  
Vol 546-549 ◽  
pp. 399-402
Author(s):  
Qi Chi Le ◽  
Zi Qiang Zhang ◽  
Jian Zhong Cui

A novel way producing magnesium billets, LFEC (low frequency electromagnetic casting processing), was developed in Northeastern University in China. The high-quality magnesium billets with less macrosegregation, refined microstructure, and better surface quality were achieved because the temperature field and the flow pattern of magnesium DC casting were improved significantly after applying low frequency electromagnetic field. Extrusion is an important plastic deformation process for magnesium alloys. In this research, the magnesium billets from LFEC were extruded through a special designed die into sheets. The results of investigation on AZ31B indicated that the extrusion velocity has obvious effects on their microstructures and mechanical properties and the sheets from LFEC had finer microstructure and higher mechanical properties than that from conventional DC casting.


2012 ◽  
Vol 28 (4) ◽  
pp. 305-318 ◽  
Author(s):  
Yixun Liu ◽  
Panagiotis Foteinos ◽  
Andrey Chernikov ◽  
Nikos Chrisochoides

Author(s):  
Keisuke Katsushima ◽  
Kohei Fujita ◽  
Tsuyoshi Ichimura ◽  
Muneo Hori ◽  
Lalith Maddegedara
Keyword(s):  

Author(s):  
Juraj Culak ◽  
Yulia V. Peet ◽  
David L. Chopp

A Matlab-based approach to image segmentation and mesh generation for creating high-quality hexagonal meshes is developed. The successful use of the procedure in patient-specific simulations of blood flow in a carotid artery is demonstrated.


Sign in / Sign up

Export Citation Format

Share Document