scholarly journals Fast and Straightforward Synthesis of Luminescent Titanium(IV) Dioxide Quantum Dots

2017 ◽  
Vol 2017 ◽  
pp. 1-9 ◽  
Author(s):  
Václav Štengl ◽  
Jiří Henych ◽  
Martin Šťastný ◽  
Martin Kormunda

The nucleus of titania was prepared by reaction of solution titanium oxosulphate with hydrazine hydrate. These titania nuclei were used for titania quantum dots synthesis by a simple and fast method. The prepared titanium(IV) dioxide quantum dots were characterized by measurement of X-ray powder diffraction (XRD), X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), high-resolution electron microscopy (HRTEM), and selected area electron diffraction (SAED). The optical properties were determined by photoluminescence (PL) spectra. The prepared titanium(IV) dioxide quantum dots have the narrow range of UV excitation (365–400 nm) and also a close range of emission maxima (450–500 nm).

1997 ◽  
Vol 482 ◽  
Author(s):  
Y. Cho ◽  
S. Rouvimov ◽  
Y. Kim ◽  
Z. Liliental-Weber ◽  
E. R. Weber

AbstractThe incorporation of nitrogen into sapphire substrates during nitridation was studied by xray photoelectron spectroscopy (XPS). An increase in the intensity of nitrogen 1s peak in XPS was observed upon longer nitridation. The surface morphology of the substrates was characterized by atomic force microscopy (AFM). High resolution electron microscopy (HREM) was employed for structural analysis. The cross sectional TEM showed a thin layer of AlN buried between amorphous AlNxO1−x and sapphire. This is the first direct observation of AlN on sapphire. The TEM images show a deeper penetration depth of nitrogen into a longer nitridated sapphire.


2003 ◽  
Vol 780 ◽  
Author(s):  
C. Essary ◽  
V. Craciun ◽  
J. M. Howard ◽  
R. K. Singh

AbstractHf metal thin films were deposited on Si substrates using a pulsed laser deposition technique in vacuum and in ammonia ambients. The films were then oxidized at 400 °C in 300 Torr of O2. Half the samples were oxidized in the presence of ultraviolet (UV) radiation from a Hg lamp array. X-ray photoelectron spectroscopy, atomic force microscopy, and grazing angle X-ray diffraction were used to compare the crystallinity, roughness, and composition of the films. It has been found that UV radiation causes roughening of the films and also promotes crystallization at lower temperatures.Furthermore, increased silicon oxidation at the interface was noted with the UVirradiated samples and was shown to be in the form of a mixed layer using angle-resolved X-ray photoelectron spectroscopy. Incorporation of nitrogen into the film reduces the oxidation of the silicon interface.


Nanomedicine ◽  
2022 ◽  
Author(s):  
Hossein Danafar ◽  
Marziyeh Salehiabar ◽  
Murat Barsbay ◽  
Hossein Rahimi ◽  
Mohammadreza Ghaffarlou ◽  
...  

Aim: To prepare a novel hybrid system for the controlled release and delivery of curcumin (CUR). Methods: A method for the ultrasound-assisted fabrication of protein-modified nanosized graphene oxide-like carbon-based nanoparticles (CBNPs) was developed. After being modified with bovine serum albumin (BSA), CUR was loaded onto the synthesized hybrid (labeled CBNPs@BSA–CUR). The structure and properties of the synthesized nanoparticles were elucidated using transmission electron microscopy (TEM), atomic force microscopy (AFM), ultraviolet-visible spectroscopy (UV-Vis), Fourier-transform infrared spectroscopy (FTIR) and x-ray photoelectron spectroscopy (XPS) methods. Results: CBNPs@BSA–CUR showed pH sensitivity and were calculated as controlled CUR release behavior. The drug-free system exhibited good biocompatibility and was nontoxic. However, CBNPs@BSA–CUR showed acceptable antiproliferative ability against MCF-7 breast cancer cells. Conclusion: CBNPs@BSA–CUR could be considered a highly promising nontoxic nanocarrier for the delivery of CUR with good biosafety.


2021 ◽  
Vol 314 ◽  
pp. 302-306
Author(s):  
Quoc Toan Le ◽  
E. Kesters ◽  
M. Doms ◽  
Efrain Altamirano Sánchez

Different types of ALD Ru films, including as-deposited, annealed Ru, without and with a subsequent CMP step, were used for wet etching study. With respect to the as-deposited Ru, the etching rate of the annealed Ru film in metal-free chemical mixtures (pH = 7-9) was found to decrease substantially. X-ray photoelectron spectroscopy characterization indicated that this behavior could be explained by the presence of the formation of RuOx (x = 2,3) caused by the anneal. A short CMP step applied to the annealed Ru wafer removed the surface RuOx, at least partially, resulting in a significant increase of the etching rate. The change in surface roughness was quantified using atomic force microscopy.


2018 ◽  
Vol 51 (2) ◽  
pp. 246-253
Author(s):  
Dev Raj Chopra ◽  
Justin Seth Pearson ◽  
Darius Durant ◽  
Ritesh Bhakta ◽  
Anil R. Chourasia

2013 ◽  
Vol 28 (2) ◽  
pp. 68-71 ◽  
Author(s):  
Thomas N. Blanton ◽  
Debasis Majumdar

In an effort to study an alternative approach to make graphene from graphene oxide (GO), exposure of GO to high-energy X-ray radiation has been performed. X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and atomic force microscopy (AFM) have been used to characterize GO before and after irradiation. Results indicate that GO exposed to high-energy radiation is converted to an amorphous carbon phase that is conductive.


Materials ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 7292
Author(s):  
Tomasz Rerek ◽  
Beata Derkowska-Zielinska ◽  
Marek Trzcinski ◽  
Robert Szczesny ◽  
Mieczyslaw K. Naparty ◽  
...  

Copper layers with thicknesses of 12, 25, and 35 nm were thermally evaporated on silicon substrates (Si(100)) with two different deposition rates 0.5 and 5.0 Å/s. The microstructure of produced coatings was studied using atomic force microscopy (AFM) and powder X-ray diffractometer (XRD). Ellipsometric measurements were used to determine the effective dielectric functions <ε˜> as well as the quality indicators of the localized surface plasmon (LSP) and the surface plasmon polariton (SPP). The composition and purity of the produced films were analysed using X-ray photoelectron spectroscopy (XPS).


2016 ◽  
Vol 689 ◽  
pp. 55-59
Author(s):  
Serge Zhuiykov

Electrical properties and morphology of orthorhombic β–WO3 nano-flakes with thickness of ~7-9 nm were investigated at the nanoscale using energy dispersive X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and current sensing force spectroscopy atomic force microscopy (CSFS-AFM, or PeakForce TUNATM). CSFS-AFM analysis established good correlation between the topography of the developed nanostructures and various features of WO3 nano-flakes synthesized via a two-step sol-gel-exfoliation method. It was determined that β–WO3 nano-flakes annealed at 550°C possess distinguished and exceptional thickness-dependent properties in comparison with the bulk, micro- and nano-structured WO3 synthesized at alternative temperatures.


Sign in / Sign up

Export Citation Format

Share Document