scholarly journals Tracking Control for Mobile Robots Considering the Dynamics of All Their Subsystems: Experimental Implementation

Complexity ◽  
2017 ◽  
Vol 2017 ◽  
pp. 1-18 ◽  
Author(s):  
José Rafael García-Sánchez ◽  
Ramón Silva-Ortigoza ◽  
Salvador Tavera-Mosqueda ◽  
Celso Márquez-Sánchez ◽  
Victor Manuel Hernández-Guzmán ◽  
...  

The trajectory tracking task in a wheeled mobile robot (WMR) is solved by proposing a three-level hierarchical controller that considers the mathematical model of the mechanical structure (differential drive WMR), actuators (DC motors), and power stage (DC/DC Buck power converters). The highest hierarchical level is a kinematic control for the mechanical structure; the medium level includes two controllers based on differential flatness for the actuators; and the lowest hierarchical level consists of two average controllers also based on differential flatness for the power stage. In order to experimentally validate the feasibility of the proposed control scheme, the hierarchical controller is implemented via a Σ–Δ-modulator in a differential drive WMR prototype that we have built. Such an implementation is achieved by using MATLAB-Simulink and the real-time interface ControlDesk together with a DS1104 board. The experimental results show the effectiveness and robustness of the proposed control scheme.

Sensors ◽  
2018 ◽  
Vol 18 (12) ◽  
pp. 4316 ◽  
Author(s):  
José García-Sánchez ◽  
Salvador Tavera-Mosqueda ◽  
Ramón Silva-Ortigoza ◽  
Victor Hernández-Guzmán ◽  
Jacobo Sandoval-Gutiérrez ◽  
...  

By using the hierarchical controller approach, a new solution for the control problem related to trajectory tracking in a differential drive wheeled mobile robot (DDWMR) is presented in this paper. For this aim, the dynamics of the three subsystems composing a DDWMR, i.e., the mechanical structure (differential drive type), the actuators (DC motors), and the power stage (DC/DC Buck power converters), are taken into account. The proposed hierarchical switched controller has three levels: the high level corresponds to a kinematic control for the mechanical structure; the medium level includes two controls based on differential flatness for the actuators; and the low level is linked to two cascade switched controls based on sliding modes and PI control for the power stage. The hierarchical switched controller was experimentally implemented on a DDWMR prototype via MATLAB-Simulink along with a DS1104 board. With the intention of assessing the performance of the switched controller, experimental results associated with a hierarchical average controller recently reported in literature are also presented here. The experimental results show the robustness of both controllers when parametric uncertainties are applied. However, the performance achieved with the switched controller introduced in the present paper is better than, or at least similar to, performance achieved with the average controller reported in literature.


Sensors ◽  
2020 ◽  
Vol 20 (17) ◽  
pp. 4959
Author(s):  
José Rafael García-Sánchez ◽  
Salvador Tavera-Mosqueda ◽  
Ramón Silva-Ortigoza ◽  
Victor Manuel Hernández-Guzmán ◽  
Magdalena Marciano-Melchor ◽  
...  

In order to solve the trajectory tracking task in a wheeled mobile robot (WMR), a dynamic three-level controller is presented in this paper. The controller considers the mechanical structure, actuators, and power stage subsystems. Such a controller is designed as follows: At the high level is a dynamic control for the WMR (differential drive type). At the medium level is a PI current control for the actuators (DC motors). Lastly, at the low level is a differential flatness-based control for the power stage (DC/DC Buck power converters). The feasibility, robustness, and performance in closed-loop of the proposed controller are validated on a DDWMR prototype through Matlab-Simulink, the real-time interface ControlDesk, and a DS1104 board. The obtained results are experimentally assessed with a hierarchical tracking controller, recently reported in literature, that was also designed on the basis of the mechanical structure, actuators, and power stage subsystems. Although both controllers are robust when parametric disturbances are taken into account, the dynamic three-level tracking controller presented in this paper is better than the hierarchical tracking controller reported in literature.


2017 ◽  
Vol 42 (39) ◽  
pp. 25026-25036 ◽  
Author(s):  
J. García-Morales ◽  
M. Cervantes-Bobadilla ◽  
R.F. Escobar-Jimenez ◽  
J.F. Gómez-Aguilar ◽  
V.H. Olivares-Peregrino

Robotica ◽  
2000 ◽  
Vol 18 (5) ◽  
pp. 495-504 ◽  
Author(s):  
Khalid Munawar ◽  
Masayoshi Esashi ◽  
Masaru Uchiyama

This paper introduces an event-based decentralized control scheme for the cooperation between multiple manipulators. This is in contrast to the common practice of using only centralized controls for such cooperation which, consequently, greatly limit the flexibility of robotic systems. The manipulators used in the present system are very simple with only two degrees of freedom, while even one of them is passive. Moreover these manipulators use very few and commonly available sensors only. Computer simulations indicated the applicability of the event-based decentralized control scheme for multi-manipulator cooperation, while real-life experimental implementation has proved that the proposed decentralized control scheme is fairly applicable for very simple and even under-actuated systems too. Hence, this work has opened new doors towards further research in this area. The proposed control scheme is expected to be equally applicable for any mobile or immobile multi-robotic system.


2015 ◽  
Vol 2015 ◽  
pp. 1-5
Author(s):  
Ping Zhou ◽  
Rongji Bai ◽  
Hao Cai

Based on an integer-order Brushless DC motors (IO-BLDCM) system, we give a fractional-order Brushless DC motors (FO-BLDCM) system in this paper. There exists a chaotic attractor for fractional-order0.95<q≤1in the FO-BLDCM system. Furthermore, using the Lyapunov direct method for fractional-order system, a control scheme is proposed to stabilize the FO-BLDCM chaotic system in the sense of Lyapunov. Numerical simulation shows that the control scheme in this paper is valid for the FO-BLDCM chaotic system.


2012 ◽  
Vol 482-484 ◽  
pp. 1904-1911 ◽  
Author(s):  
Fu Yun Yang ◽  
Mi Ching Tsai

Unanticipated disturbances in outdoor environments are the main impediments to the development of motion control for transmission vehicles. Classical synchronous approaches which neglect the mechanical coupling effect are unsuitable for such types of mechanisms. To address this concern, much effort has been made to overcome such difficulties. A synchronous decoupled control framework was proposed based on the multivariable model, in which a decoupling transformation matrix was adopted for improving the corresponding performance. The concept of the proposed control framework is intuitive and quite straightforward. To demonstrate the capacity of the mathematical model as well as the effectiveness of the control scheme, a power-wheelchair was utilized as an illustrated example, where the synchronous performance can be enhanced by almost 50% as compared to the classic approach.


2020 ◽  
Vol 71 (2) ◽  
pp. 122-126
Author(s):  
Ahmed Alkamachi

AbstractA single inverted pendulum on a cart (SIPC) is designed and modeled physically using SolidWorks. The model is then exported to the Simulink environment to form a Simscape model for simulation and test purposes. This type of modeling uses a physical grid tactic to model mechanical structures. It requires connection of the physical elements with physical signal converter to define the implicit system dynamics to be modeled. The integration between the SolidWorks and Simscape eliminates the need of deriving the mathematical model and provides a platform for the rapid controller design for the system. State feedback control scheme is proposed, designed, and tuned aiming to maintain the pendulum in the upright place while tracking the desired cart position. Several simulation cases are studied to prove the controller abilities. In order to examine the controller robustness, disturbance rejection and noise attenuation capabilities are also discovered.


2012 ◽  
Vol 516-517 ◽  
pp. 1453-1458 ◽  
Author(s):  
Peng Ye ◽  
Lin Yuan ◽  
Duo Jiao Guan ◽  
Xing Wei Xu ◽  
Kai Yuan Hou

VSC-Multi-Terminal Direct Current(VSC-MTDC) system is much more controllable and economic. In this paper, the mathematical model for the VSC-MTDC system is set up. Base on this model, the multi-terminal constant DC voltage control scheme with an offset component was developed for MTDC system in the distribute network. Decoupling linear PI controllers are applied for the independent control of active and reactive power. Constant DC and AC voltage controller is implemented respectively for source side and loads side for the high quality power supply. Simulation results show that the control scheme is very effective. With the proposed control strategies, dynamic process of the system can be controlled effectively. What is more, the control law is not complex and it is in the local mode. All of these merits make the control strategy very practical.


Sign in / Sign up

Export Citation Format

Share Document